Post-synthetic modifications (PSM) have drawn great attention as a vigoroso tool to tune or enhance the performance of metal-organic frameworks (MOFs). However, the current PSM method usually have to sacrifice the porosity of MOFs to enrich their functionality, such as pore space partition (PSP) and post-synthetic elimination and insertion (PSE&I), causing a trade-off in this aspect. To address this issue, we herein propose a new PSM strategy of using the size-matching ligands as the bolts to lock MOFs' pores, which could be anchored onto open metal sites (OMSs) after guest loading through a stepwise manipulation. As a result, the loaded cargoes undergo a controlled releasing process with respect to different bolt ligands. Our proposed strategy provides a promising way to balance the functionality and porosity of MOFs.