Novel Technique for the Identification of Hip Implants Using Artificial Intelligence

人工智能 计算机科学 可扩展性 机器学习 卷积神经网络 人工神经网络 鉴定(生物学) 数据库 植物 生物
作者
Neil W Antonson,Brandt C. Buckner,Beau S. Konigsberg,Curtis W. Hartman,Kevin L. Garvin,Beau J. Kildow
出处
期刊:Journal of Arthroplasty [Elsevier]
被引量:2
标识
DOI:10.1016/j.arth.2024.02.001
摘要

Abstract

Background

The anticipated growth of total hip arthroplasty will result in an increased need for revision total hip arthroplasty. Preoperative planning, including identifying current implants, is critical for successful revision surgery. Artificial intelligence (AI) is promising for aiding clinical decision-making, including hip implant identification. However, previous studies have limitations such as small datasets, dissimilar stem designs, limited scalability, and the need for AI expertise. To address these limitations, we developed a novel technique to generate large datasets, tested radiographically similar stems, and demonstrated scalability utilizing a no-code machine learning solution.

Methods

We trained, validated, and tested an automated machine learning-implemented convolutional neural network to classify 9 radiographically similar femoral implants with a metaphyseal-fitting wedge taper design. Our novel technique uses computed tomography-derived projections of a 3-dimensional scanned implant model superimposed within a computed tomography pelvis volume. We employed computer-aided design modeling and MATLAB to process and manipulate the images. This generated 27,020 images for training (22,957) and validation (4,063) sets. We obtained 786 test images from various sources. The performance of the model was evaluated by calculating sensitivity, specificity, and accuracy.

Results

Our machine learning model discriminated the 9 implant models with a mean accuracy of 97.4%, sensitivity of 88.4%, and specificity of 98.5%.

Conclusions

Our novel hip implant detection technique accurately identified 9 radiographically similar implants. The method generates large datasets, is scalable, and can include historic or obscure implants. The no-code machine learning model demonstrates the feasibility of obtaining meaningful results without AI expertise, encouraging further research in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyu发布了新的文献求助10
刚刚
hvgjgfjhgjh发布了新的文献求助10
2秒前
nine完成签到,获得积分10
2秒前
someone完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
smy发布了新的文献求助30
4秒前
斯内克完成签到,获得积分10
5秒前
5秒前
浮游应助野生菜狗采纳,获得10
6秒前
6秒前
欢呼的疾完成签到,获得积分10
6秒前
失眠茗完成签到,获得积分10
6秒前
科研通AI6应助别凡采纳,获得10
6秒前
脑洞疼应助yuyu采纳,获得10
7秒前
ybh完成签到,获得积分10
7秒前
刘振岁完成签到,获得积分10
7秒前
xue完成签到 ,获得积分10
7秒前
LLLLLLLL应助可靠的之瑶采纳,获得10
7秒前
8秒前
8秒前
YY完成签到,获得积分20
8秒前
问题多多完成签到,获得积分10
8秒前
皮卡丘发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
熙熙完成签到,获得积分10
9秒前
喜悦的梦芝完成签到,获得积分10
10秒前
king发布了新的文献求助30
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
火火完成签到,获得积分10
12秒前
范书豪发布了新的文献求助10
12秒前
12秒前
洛子蓁发布了新的文献求助10
12秒前
13秒前
猛踹瘸子那条好腿完成签到,获得积分10
14秒前
完美世界应助同人一剑采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571571
求助须知:如何正确求助?哪些是违规求助? 4656806
关于积分的说明 14717928
捐赠科研通 4597626
什么是DOI,文献DOI怎么找? 2523291
邀请新用户注册赠送积分活动 1494143
关于科研通互助平台的介绍 1464280