Novel Technique for the Identification of Hip Implants Using Artificial Intelligence

人工智能 计算机科学 可扩展性 机器学习 卷积神经网络 人工神经网络 鉴定(生物学) 数据库 植物 生物
作者
Neil W Antonson,Brandt C. Buckner,Beau S. Konigsberg,Curtis W. Hartman,Kevin L. Garvin,Beau J. Kildow
出处
期刊:Journal of Arthroplasty [Elsevier]
被引量:2
标识
DOI:10.1016/j.arth.2024.02.001
摘要

Abstract

Background

The anticipated growth of total hip arthroplasty will result in an increased need for revision total hip arthroplasty. Preoperative planning, including identifying current implants, is critical for successful revision surgery. Artificial intelligence (AI) is promising for aiding clinical decision-making, including hip implant identification. However, previous studies have limitations such as small datasets, dissimilar stem designs, limited scalability, and the need for AI expertise. To address these limitations, we developed a novel technique to generate large datasets, tested radiographically similar stems, and demonstrated scalability utilizing a no-code machine learning solution.

Methods

We trained, validated, and tested an automated machine learning-implemented convolutional neural network to classify 9 radiographically similar femoral implants with a metaphyseal-fitting wedge taper design. Our novel technique uses computed tomography-derived projections of a 3-dimensional scanned implant model superimposed within a computed tomography pelvis volume. We employed computer-aided design modeling and MATLAB to process and manipulate the images. This generated 27,020 images for training (22,957) and validation (4,063) sets. We obtained 786 test images from various sources. The performance of the model was evaluated by calculating sensitivity, specificity, and accuracy.

Results

Our machine learning model discriminated the 9 implant models with a mean accuracy of 97.4%, sensitivity of 88.4%, and specificity of 98.5%.

Conclusions

Our novel hip implant detection technique accurately identified 9 radiographically similar implants. The method generates large datasets, is scalable, and can include historic or obscure implants. The no-code machine learning model demonstrates the feasibility of obtaining meaningful results without AI expertise, encouraging further research in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
破绽完成签到,获得积分10
刚刚
Kirsten完成签到,获得积分10
1秒前
FashionBoy应助呆一起采纳,获得10
1秒前
2秒前
刻苦东蒽完成签到,获得积分10
2秒前
liu发布了新的文献求助10
2秒前
上官若男应助TG采纳,获得10
3秒前
FashionBoy应助wlnhyF采纳,获得10
4秒前
10711发布了新的文献求助10
5秒前
wuuw发布了新的文献求助20
6秒前
7秒前
呈歌完成签到 ,获得积分10
7秒前
8秒前
8秒前
酸酸发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
虚拟的纸鹤完成签到 ,获得积分10
9秒前
万能图书馆应助10711采纳,获得10
10秒前
思源应助guan采纳,获得10
10秒前
10秒前
10秒前
乐观的小鸡完成签到,获得积分10
10秒前
11秒前
慧慧完成签到 ,获得积分10
11秒前
Jasper应助liu采纳,获得10
12秒前
大方岩完成签到,获得积分10
13秒前
岳元满完成签到,获得积分20
13秒前
超超发布了新的文献求助10
13秒前
廖喜林发布了新的文献求助10
13秒前
vvA11完成签到,获得积分10
14秒前
14秒前
14秒前
浅风完成签到,获得积分10
15秒前
TANG发布了新的文献求助20
15秒前
呆一起发布了新的文献求助10
16秒前
vvA11发布了新的文献求助10
16秒前
桔梗发布了新的文献求助10
16秒前
李健应助hubery采纳,获得10
18秒前
handsome发布了新的文献求助10
18秒前
爱意发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901