已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel Technique for the Identification of Hip Implants Using Artificial Intelligence

人工智能 计算机科学 可扩展性 机器学习 卷积神经网络 人工神经网络 鉴定(生物学) 数据库 植物 生物
作者
Neil W Antonson,Brandt C. Buckner,Beau S. Konigsberg,Curtis W. Hartman,Kevin L. Garvin,Beau J. Kildow
出处
期刊:Journal of Arthroplasty [Elsevier BV]
被引量:2
标识
DOI:10.1016/j.arth.2024.02.001
摘要

Abstract

Background

The anticipated growth of total hip arthroplasty will result in an increased need for revision total hip arthroplasty. Preoperative planning, including identifying current implants, is critical for successful revision surgery. Artificial intelligence (AI) is promising for aiding clinical decision-making, including hip implant identification. However, previous studies have limitations such as small datasets, dissimilar stem designs, limited scalability, and the need for AI expertise. To address these limitations, we developed a novel technique to generate large datasets, tested radiographically similar stems, and demonstrated scalability utilizing a no-code machine learning solution.

Methods

We trained, validated, and tested an automated machine learning-implemented convolutional neural network to classify 9 radiographically similar femoral implants with a metaphyseal-fitting wedge taper design. Our novel technique uses computed tomography-derived projections of a 3-dimensional scanned implant model superimposed within a computed tomography pelvis volume. We employed computer-aided design modeling and MATLAB to process and manipulate the images. This generated 27,020 images for training (22,957) and validation (4,063) sets. We obtained 786 test images from various sources. The performance of the model was evaluated by calculating sensitivity, specificity, and accuracy.

Results

Our machine learning model discriminated the 9 implant models with a mean accuracy of 97.4%, sensitivity of 88.4%, and specificity of 98.5%.

Conclusions

Our novel hip implant detection technique accurately identified 9 radiographically similar implants. The method generates large datasets, is scalable, and can include historic or obscure implants. The no-code machine learning model demonstrates the feasibility of obtaining meaningful results without AI expertise, encouraging further research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sfwer完成签到,获得积分10
刚刚
626完成签到 ,获得积分20
刚刚
罗QQ完成签到 ,获得积分10
1秒前
2秒前
luming完成签到 ,获得积分10
2秒前
浔初先生完成签到,获得积分10
2秒前
邹随阴发布了新的文献求助10
2秒前
4秒前
一条摆摆的沙丁鱼完成签到 ,获得积分10
6秒前
小夜子完成签到 ,获得积分10
6秒前
牛牛向前冲完成签到,获得积分10
6秒前
执着南琴完成签到,获得积分10
7秒前
8秒前
dengdengdeng完成签到,获得积分10
9秒前
王知颖完成签到,获得积分10
9秒前
邹随阴完成签到,获得积分10
10秒前
阔达静曼完成签到 ,获得积分10
10秒前
今竹发布了新的文献求助10
10秒前
嘟嘟嘟嘟完成签到 ,获得积分10
12秒前
冷酷丹翠完成签到 ,获得积分10
12秒前
七一安完成签到 ,获得积分10
12秒前
Aamidtou完成签到,获得积分10
14秒前
明亮的涵山完成签到,获得积分20
16秒前
幽默海白完成签到 ,获得积分10
16秒前
凤里完成签到 ,获得积分10
17秒前
20秒前
还好完成签到 ,获得积分10
20秒前
磊少完成签到,获得积分10
20秒前
共享精神应助愉悦采纳,获得10
20秒前
沉醉的中国钵完成签到 ,获得积分10
22秒前
HI完成签到 ,获得积分10
22秒前
23秒前
24秒前
落落完成签到 ,获得积分0
24秒前
27秒前
dwxj007完成签到,获得积分10
29秒前
研友_VZG7GZ应助汝桢采纳,获得10
31秒前
黑巧的融化完成签到 ,获得积分10
31秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253082
求助须知:如何正确求助?哪些是违规求助? 4416579
关于积分的说明 13750145
捐赠科研通 4288834
什么是DOI,文献DOI怎么找? 2353101
邀请新用户注册赠送积分活动 1349865
关于科研通互助平台的介绍 1309581