Novel Technique for the Identification of Hip Implants Using Artificial Intelligence

人工智能 计算机科学 可扩展性 机器学习 卷积神经网络 人工神经网络 鉴定(生物学) 数据库 植物 生物
作者
Neil W Antonson,Brandt C. Buckner,Beau S. Konigsberg,Curtis W. Hartman,Kevin L. Garvin,Beau J. Kildow
出处
期刊:Journal of Arthroplasty [Elsevier BV]
被引量:2
标识
DOI:10.1016/j.arth.2024.02.001
摘要

Abstract

Background

The anticipated growth of total hip arthroplasty will result in an increased need for revision total hip arthroplasty. Preoperative planning, including identifying current implants, is critical for successful revision surgery. Artificial intelligence (AI) is promising for aiding clinical decision-making, including hip implant identification. However, previous studies have limitations such as small datasets, dissimilar stem designs, limited scalability, and the need for AI expertise. To address these limitations, we developed a novel technique to generate large datasets, tested radiographically similar stems, and demonstrated scalability utilizing a no-code machine learning solution.

Methods

We trained, validated, and tested an automated machine learning-implemented convolutional neural network to classify 9 radiographically similar femoral implants with a metaphyseal-fitting wedge taper design. Our novel technique uses computed tomography-derived projections of a 3-dimensional scanned implant model superimposed within a computed tomography pelvis volume. We employed computer-aided design modeling and MATLAB to process and manipulate the images. This generated 27,020 images for training (22,957) and validation (4,063) sets. We obtained 786 test images from various sources. The performance of the model was evaluated by calculating sensitivity, specificity, and accuracy.

Results

Our machine learning model discriminated the 9 implant models with a mean accuracy of 97.4%, sensitivity of 88.4%, and specificity of 98.5%.

Conclusions

Our novel hip implant detection technique accurately identified 9 radiographically similar implants. The method generates large datasets, is scalable, and can include historic or obscure implants. The no-code machine learning model demonstrates the feasibility of obtaining meaningful results without AI expertise, encouraging further research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Carol发布了新的文献求助10
刚刚
1秒前
NexusExplorer应助秃顶双马尾采纳,获得10
2秒前
3秒前
3秒前
ZWGS发布了新的文献求助10
4秒前
别卷了完成签到 ,获得积分10
4秒前
CodeCraft应助健壮的怜烟采纳,获得10
5秒前
6秒前
6秒前
张道恒发布了新的文献求助10
7秒前
所所应助Tung采纳,获得10
8秒前
han应助阿良采纳,获得10
8秒前
laity完成签到,获得积分10
9秒前
xxx发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
11秒前
123发布了新的文献求助10
13秒前
15秒前
欢呼寻冬完成签到 ,获得积分10
16秒前
nj完成签到,获得积分10
16秒前
momo发布了新的文献求助10
16秒前
汌舟完成签到,获得积分10
17秒前
启点发布了新的文献求助10
17秒前
18秒前
酷波er应助蔡翌文采纳,获得10
18秒前
18秒前
Akim应助爱哭的小女孩采纳,获得10
19秒前
方知完成签到,获得积分20
21秒前
ZHAO完成签到,获得积分10
26秒前
星辰完成签到 ,获得积分10
27秒前
27秒前
ding应助科研通管家采纳,获得10
29秒前
Youdge应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
30秒前
30秒前
MchemG应助科研通管家采纳,获得10
30秒前
czh应助科研通管家采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052