A Perspective on the Prospective Use of AI in Protein Structure Prediction

计算生物学 蛋白质结构预测 计算机科学 分子动力学 结构生物信息学 机器学习 蛋白质结构 生物系统 人工智能 化学 生物 生物化学 计算化学
作者
Raphaëlle Versini,Sujith Sritharan,Burcu Aykaç Fas,Thibault Tubiana,Sana Zineb Aimeur,Julien Henri,Marie Erard,Oliver Nüße,Jessica Andréani,Marc Baaden,Patrick Fuchs,Tatiana Galochkina,Alexios Chatzigoulas,Zoe Cournia,Hubert Santuz,Sophie Sacquin‐Mora,Antoine Taly
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (1): 26-41 被引量:15
标识
DOI:10.1021/acs.jcim.3c01361
摘要

AlphaFold2 (AF2) and RoseTTaFold (RF) have revolutionized structural biology, serving as highly reliable and effective methods for predicting protein structures. This article explores their impact and limitations, focusing on their integration into experimental pipelines and their application in diverse protein classes, including membrane proteins, intrinsically disordered proteins (IDPs), and oligomers. In experimental pipelines, AF2 models help X-ray crystallography in resolving the phase problem, while complementarity with mass spectrometry and NMR data enhances structure determination and protein flexibility prediction. Predicting the structure of membrane proteins remains challenging for both AF2 and RF due to difficulties in capturing conformational ensembles and interactions with the membrane. Improvements in incorporating membrane-specific features and predicting the structural effect of mutations are crucial. For intrinsically disordered proteins, AF2's confidence score (pLDDT) serves as a competitive disorder predictor, but integrative approaches including molecular dynamics (MD) simulations or hydrophobic cluster analyses are advocated for accurate dynamics representation. AF2 and RF show promising results for oligomeric models, outperforming traditional docking methods, with AlphaFold-Multimer showing improved performance. However, some caveats remain in particular for membrane proteins. Real-life examples demonstrate AF2's predictive capabilities in unknown protein structures, but models should be evaluated for their agreement with experimental data. Furthermore, AF2 models can be used complementarily with MD simulations. In this Perspective, we propose a "wish list" for improving deep-learning-based protein folding prediction models, including using experimental data as constraints and modifying models with binding partners or post-translational modifications. Additionally, a meta-tool for ranking and suggesting composite models is suggested, driving future advancements in this rapidly evolving field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
窝恁蝶发布了新的文献求助10
刚刚
科研通AI2S应助hua采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
成就凌香应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
2秒前
花凉完成签到,获得积分10
3秒前
3秒前
4秒前
Lucas应助窝恁蝶采纳,获得10
5秒前
专一的人雄完成签到,获得积分20
5秒前
花凉发布了新的文献求助10
5秒前
小龙完成签到,获得积分10
7秒前
多摩川的烟花少年完成签到,获得积分20
9秒前
12秒前
12秒前
13秒前
传奇3应助丙烯酸树脂采纳,获得10
14秒前
斯文败类应助DDda采纳,获得10
15秒前
唐晓秦完成签到,获得积分10
15秒前
15秒前
天天快乐应助1234采纳,获得10
16秒前
17秒前
温暖凡灵发布了新的文献求助10
18秒前
勤恳安南发布了新的文献求助30
20秒前
Frank应助coco采纳,获得50
22秒前
23秒前
32秒前
希灵黑碳完成签到,获得积分10
33秒前
35秒前
会武功的阿吉完成签到,获得积分10
37秒前
唐晓秦发布了新的文献求助10
37秒前
mini完成签到 ,获得积分10
38秒前
39秒前
pluto应助seal采纳,获得10
39秒前
xiaoliuyaouli发布了新的文献求助10
39秒前
一一应助juckblack采纳,获得10
40秒前
不若避世关注了科研通微信公众号
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240790
求助须知:如何正确求助?哪些是违规求助? 2885503
关于积分的说明 8238924
捐赠科研通 2553931
什么是DOI,文献DOI怎么找? 1382078
科研通“疑难数据库(出版商)”最低求助积分说明 649461
邀请新用户注册赠送积分活动 625079