数学
有界函数
组合数学
能量(信号处理)
正多边形
数学物理
物理
数学分析
几何学
统计
作者
Guofeng Che,Tsung‐fang Wu
出处
期刊:Topological Methods in Nonlinear Analysis
[Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University]
日期:2023-09-23
卷期号:: 1-29
标识
DOI:10.12775/tmna.2022.046
摘要
In this paper, we are concerned with the following fractionalSchrödinger-Poisson systems with concave-convex nonlinearities: \begin{equation*} \begin{cases} (-\Delta )^{s}u+u+\mu l(x)\phi u=f(x)|u|^{p-2}u+g(x)|u|^{q-2}u & \text{in }\mathbb{R}^{3}, \\ (-\Delta )^{t}\phi =l(x)u^{2} & \text{in }\mathbb{R}^{3},% \end{cases} \end{equation*} where ${1}/{2}< t\leq s< 1$, $1< q< 2< p< \min \{4,2_{s}^{\ast }\}$, $2_{s}^{\ast }={6}/({3-2s})$, and $\mu > 0$ is a parameter, $f\in C\big(\mathbb{R}^{3}\big)$ is sign-changing in $\mathbb{R}^{3}$ and $g\in L^{p/(p-q)}\big(\mathbb{R}^{3}\big)$. Under some suitable assumptions on $l(x)$, $f(x)$ and $g(x)$, we explore that the energy functional corresponding to the system is coercive and bounded below on $H^{\alpha }\big(\mathbb{R}^{3}\big)$ which gets a positive solution. Furthermore, we constructed some new estimation techniques, and obtained other two positive solutions. Recent results from the literature are generally improved and extended.
科研通智能强力驱动
Strongly Powered by AbleSci AI