Efficient and Robust Trace Anomaly Detection for Large-Scale Microservice Systems

计算机科学 跟踪(心理语言学) 异常检测 编码器 数据挖掘 噪音(视频) 人工智能 机器学习 语言学 操作系统 图像(数学) 哲学
作者
Shenglin Zhang,Zhizhong Pan,Heng Liu,Peng Jin,Yongqian Sun,Qianyu Ouyang,Jiaju Wang,Xiaoyan Jia,Yuzhi Zhang,Hui Ye,Yongqiang Zou,Dan Pei
标识
DOI:10.1109/issre59848.2023.00012
摘要

Microservice invocation anomalies can have a detrimental impact on user experience and service revenue. While existing trace anomaly detection approaches typically focus on anomalies in response time and invocation structure, they often overlook the importance of using fine-grained features to detect anomalies. Additionally, trace data obtained from real-world scenarios is typically accompanied by noise, which can hinder the effectiveness of anomaly detection approaches. Furthermore, large-scale trace data can significantly impact model training efficiency. To address these challenges, we propose TraceSieve, an unsupervised trace anomaly detection method that accurately detects trace anomalies. Our approach leverages an auto-encoder architecture within an adversarial training framework to filter out noise data. Additionally, we integrate VGAE-EWC, which combines Variational Graph Auto-Encoder (VGAE) with Elastic Weight Consolidation (EWC), to overcome the challenges of enormous time consumption during the training phase. Finally, we localize the root cause of trace anomalies. Our proposed method is evaluated using two different datasets, and our results demonstrate that TraceSieve achieves an F 1 -score of 0.970 and 0.925, respectively, outperforming state-of-the-art trace anomaly detection approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
1秒前
英姑应助卓诗云采纳,获得10
1秒前
cctv18应助卓诗云采纳,获得10
1秒前
FashionBoy应助Xu采纳,获得50
1秒前
1秒前
流年完成签到,获得积分10
2秒前
彭于晏应助张嘉佳采纳,获得10
2秒前
科研通AI2S应助hh0采纳,获得10
3秒前
3秒前
orixero应助健康的寄容采纳,获得20
3秒前
琉璃完成签到,获得积分10
3秒前
5秒前
chemwang发布了新的文献求助10
5秒前
5秒前
所所应助贝果小脑袋采纳,获得10
5秒前
6秒前
彭于彦祖应助沈达采纳,获得30
6秒前
酷波er应助1937采纳,获得10
6秒前
雪景写诗发布了新的文献求助10
6秒前
6秒前
领导范儿应助bluecoin采纳,获得10
7秒前
lm发布了新的文献求助30
7秒前
whitebird完成签到,获得积分10
7秒前
北斗星星给北斗星星的求助进行了留言
8秒前
清爽的黄豆完成签到,获得积分10
8秒前
8秒前
CipherSage应助shanshan采纳,获得10
8秒前
喜悦剑通完成签到,获得积分10
8秒前
wanci应助直率绫采纳,获得30
8秒前
liuke发布了新的文献求助10
9秒前
9秒前
9秒前
sekidesu发布了新的文献求助10
10秒前
10秒前
不安毛豆应助自然天思采纳,获得10
11秒前
等待发布了新的文献求助10
12秒前
Hello应助伏坎采纳,获得10
12秒前
12秒前
拾一发布了新的文献求助10
12秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245223
求助须知:如何正确求助?哪些是违规求助? 2888917
关于积分的说明 8256094
捐赠科研通 2557285
什么是DOI,文献DOI怎么找? 1385910
科研通“疑难数据库(出版商)”最低求助积分说明 650265
邀请新用户注册赠送积分活动 626494