The influence of nitrogen and variety on rice grain moisture content dry-down

干物质 含水量 线性回归 数学 水分 农学 氮气 非线性回归 回归分析 环境科学 统计 气象学 化学 地理 生物 岩土工程 有机化学 工程类
作者
James Brinkhoff,Brian W. Dunn,T. S. Dunn
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:302: 109044-109044 被引量:1
标识
DOI:10.1016/j.fcr.2023.109044
摘要

Rice field management around maturity and harvest are some of the most difficult decisions growers face. Field drainage and harvest timing affect quality, yield, and post-harvest drying costs. These decisions are informed by grain moisture content (MC). Over three years, three sites and three varieties, we studied the field dry-down rate and time to optimal harvest MC. We showed that field-specific parameters significantly affected these characteristics, including rice variety, Nitrogen applied (NA), mid-season N uptake (NU) and dry matter (DM). Increased N and DM is associated with increased MC and thus delays time to harvest. We developed models based on linear regression and nonlinear machine learning (ML) algorithms, including parameters describing these field-specific conditions. Cross validation across the three years provided a realistic expectation of model prediction errors. A linear model with the addition of nonlinear predictors achieved competitive performance compared with more complex and less interpretable ML models. When MC was modeled as a function of days since heading, similar or better accuracy was achieved to using accumulated weather parameters. Moisture content was predicted with mean absolute error of 2.1 %. The predicted time from heading to harvest MC was improved by the inclusion of field-specific parameters (N and variety) from mean absolute error of 6.8 days to 5.7 days. The final linear regression model explained 80 % of the moisture variability in the dataset, and provided estimates of dry-down rates, moisture as a function of time, and time to reach harvest moisture. This study shows the importance of including field-specific parameters when estimating of rice harvest timing, and provides methods to model these effects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福大白发布了新的文献求助10
1秒前
传奇3应助爱学习的曼卉采纳,获得10
6秒前
8秒前
无辜代芙关注了科研通微信公众号
8秒前
charlins完成签到 ,获得积分10
9秒前
9秒前
12秒前
jmx234完成签到,获得积分10
12秒前
kaka完成签到,获得积分10
14秒前
5160完成签到,获得积分10
16秒前
111发布了新的文献求助10
16秒前
成功应助房房房破防啦采纳,获得20
17秒前
www完成签到 ,获得积分10
17秒前
18秒前
XXX完成签到,获得积分10
19秒前
英俊的铭应助Zlinco采纳,获得10
19秒前
科目三应助965481采纳,获得10
20秒前
20秒前
21秒前
李y梅子发布了新的文献求助10
21秒前
恋雅颖月应助xiaokezhang采纳,获得10
22秒前
与落发布了新的文献求助10
24秒前
qiuyu发布了新的文献求助10
25秒前
汤元完成签到 ,获得积分10
26秒前
26秒前
27秒前
长度2到完成签到,获得积分10
29秒前
30秒前
Zlinco发布了新的文献求助10
34秒前
冰水混合物完成签到,获得积分10
35秒前
JamesPei应助六六三十六采纳,获得10
36秒前
不会仰泳的鱼完成签到,获得积分10
38秒前
脑洞疼应助冰水混合物采纳,获得10
38秒前
星辰大海应助阿槿采纳,获得10
38秒前
比比完成签到,获得积分10
40秒前
40秒前
41秒前
41秒前
朱恒昊发布了新的文献求助30
42秒前
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710