The influence of nitrogen and variety on rice grain moisture content dry-down

干物质 含水量 线性回归 数学 水分 农学 氮气 非线性回归 回归分析 环境科学 统计 气象学 化学 地理 生物 岩土工程 有机化学 工程类
作者
James Brinkhoff,Brian W. Dunn,T. S. Dunn
出处
期刊:Field Crops Research [Elsevier]
卷期号:302: 109044-109044 被引量:1
标识
DOI:10.1016/j.fcr.2023.109044
摘要

Rice field management around maturity and harvest are some of the most difficult decisions growers face. Field drainage and harvest timing affect quality, yield, and post-harvest drying costs. These decisions are informed by grain moisture content (MC). Over three years, three sites and three varieties, we studied the field dry-down rate and time to optimal harvest MC. We showed that field-specific parameters significantly affected these characteristics, including rice variety, Nitrogen applied (NA), mid-season N uptake (NU) and dry matter (DM). Increased N and DM is associated with increased MC and thus delays time to harvest. We developed models based on linear regression and nonlinear machine learning (ML) algorithms, including parameters describing these field-specific conditions. Cross validation across the three years provided a realistic expectation of model prediction errors. A linear model with the addition of nonlinear predictors achieved competitive performance compared with more complex and less interpretable ML models. When MC was modeled as a function of days since heading, similar or better accuracy was achieved to using accumulated weather parameters. Moisture content was predicted with mean absolute error of 2.1 %. The predicted time from heading to harvest MC was improved by the inclusion of field-specific parameters (N and variety) from mean absolute error of 6.8 days to 5.7 days. The final linear regression model explained 80 % of the moisture variability in the dataset, and provided estimates of dry-down rates, moisture as a function of time, and time to reach harvest moisture. This study shows the importance of including field-specific parameters when estimating of rice harvest timing, and provides methods to model these effects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风筝发布了新的文献求助10
1秒前
赘婿应助葛根采纳,获得10
1秒前
Anonymity发布了新的文献求助10
1秒前
南庭发布了新的文献求助10
1秒前
拼搏的代玉完成签到,获得积分10
2秒前
科研劝退完成签到,获得积分10
3秒前
YY发布了新的文献求助20
3秒前
CY完成签到,获得积分10
4秒前
出口的胖猪完成签到 ,获得积分10
5秒前
5秒前
5秒前
ossantu发布了新的文献求助10
6秒前
哈尼恒发布了新的文献求助10
7秒前
简.....完成签到,获得积分10
7秒前
欧阳宇完成签到,获得积分10
7秒前
7秒前
7秒前
活力成败完成签到,获得积分10
8秒前
YXYWZMSZ完成签到,获得积分10
8秒前
YY完成签到,获得积分10
9秒前
Ray完成签到,获得积分10
9秒前
英俊钢铁侠完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
yyymmma发布了新的文献求助10
11秒前
CL发布了新的文献求助10
12秒前
zerlina33完成签到,获得积分10
12秒前
lrl发布了新的文献求助10
13秒前
aikeyan发布了新的文献求助10
13秒前
13秒前
丘比特应助獭祭鱼采纳,获得10
14秒前
和功耗过高完成签到,获得积分20
14秒前
15秒前
随便发布了新的文献求助20
15秒前
笨笨松发布了新的文献求助10
15秒前
15秒前
虚拟的皮卡丘完成签到,获得积分10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135173
求助须知:如何正确求助?哪些是违规求助? 2786162
关于积分的说明 7775843
捐赠科研通 2442066
什么是DOI,文献DOI怎么找? 1298380
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847