The influence of nitrogen and variety on rice grain moisture content dry-down

干物质 含水量 线性回归 数学 水分 农学 氮气 非线性回归 回归分析 环境科学 统计 气象学 化学 地理 生物 工程类 有机化学 岩土工程
作者
James Brinkhoff,Brian W. Dunn,T. S. Dunn
出处
期刊:Field Crops Research [Elsevier]
卷期号:302: 109044-109044 被引量:1
标识
DOI:10.1016/j.fcr.2023.109044
摘要

Rice field management around maturity and harvest are some of the most difficult decisions growers face. Field drainage and harvest timing affect quality, yield, and post-harvest drying costs. These decisions are informed by grain moisture content (MC). Over three years, three sites and three varieties, we studied the field dry-down rate and time to optimal harvest MC. We showed that field-specific parameters significantly affected these characteristics, including rice variety, Nitrogen applied (NA), mid-season N uptake (NU) and dry matter (DM). Increased N and DM is associated with increased MC and thus delays time to harvest. We developed models based on linear regression and nonlinear machine learning (ML) algorithms, including parameters describing these field-specific conditions. Cross validation across the three years provided a realistic expectation of model prediction errors. A linear model with the addition of nonlinear predictors achieved competitive performance compared with more complex and less interpretable ML models. When MC was modeled as a function of days since heading, similar or better accuracy was achieved to using accumulated weather parameters. Moisture content was predicted with mean absolute error of 2.1 %. The predicted time from heading to harvest MC was improved by the inclusion of field-specific parameters (N and variety) from mean absolute error of 6.8 days to 5.7 days. The final linear regression model explained 80 % of the moisture variability in the dataset, and provided estimates of dry-down rates, moisture as a function of time, and time to reach harvest moisture. This study shows the importance of including field-specific parameters when estimating of rice harvest timing, and provides methods to model these effects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
五月好难发布了新的文献求助10
1秒前
EpQAQ完成签到,获得积分10
2秒前
2秒前
神勇难胜完成签到 ,获得积分10
2秒前
邱海华发布了新的文献求助10
2秒前
3秒前
mxr完成签到,获得积分10
3秒前
khh完成签到 ,获得积分10
4秒前
Akim应助vvA11采纳,获得10
4秒前
4秒前
4秒前
蓝天发布了新的文献求助10
6秒前
keyaner发布了新的文献求助10
6秒前
是谁还没睡完成签到 ,获得积分10
6秒前
6秒前
7秒前
科研通AI6应助yangyajie采纳,获得10
8秒前
丘比特应助lawrenceip0926采纳,获得10
8秒前
8秒前
KIKI完成签到,获得积分10
8秒前
fuchao发布了新的文献求助10
8秒前
khh关注了科研通微信公众号
8秒前
9秒前
李伟完成签到,获得积分10
9秒前
星辰完成签到,获得积分10
9秒前
sakyadamo发布了新的文献求助10
9秒前
科研通AI6应助上山的吗喽采纳,获得10
10秒前
悦耳的灵完成签到 ,获得积分10
10秒前
cheng发布了新的文献求助10
11秒前
11秒前
Vv完成签到 ,获得积分10
11秒前
小二郎应助Jerez采纳,获得10
12秒前
Jasper应助韩修杰采纳,获得10
12秒前
orixero应助10711采纳,获得10
12秒前
积极嚓茶完成签到,获得积分10
13秒前
Hiiiiii发布了新的文献求助10
13秒前
13秒前
敬之发布了新的文献求助10
14秒前
研友_VZG7GZ应助清欢采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901