The influence of nitrogen and variety on rice grain moisture content dry-down

干物质 含水量 线性回归 数学 水分 农学 氮气 非线性回归 回归分析 环境科学 统计 气象学 化学 地理 生物 工程类 有机化学 岩土工程
作者
James Brinkhoff,Brian W. Dunn,T. S. Dunn
出处
期刊:Field Crops Research [Elsevier]
卷期号:302: 109044-109044 被引量:1
标识
DOI:10.1016/j.fcr.2023.109044
摘要

Rice field management around maturity and harvest are some of the most difficult decisions growers face. Field drainage and harvest timing affect quality, yield, and post-harvest drying costs. These decisions are informed by grain moisture content (MC). Over three years, three sites and three varieties, we studied the field dry-down rate and time to optimal harvest MC. We showed that field-specific parameters significantly affected these characteristics, including rice variety, Nitrogen applied (NA), mid-season N uptake (NU) and dry matter (DM). Increased N and DM is associated with increased MC and thus delays time to harvest. We developed models based on linear regression and nonlinear machine learning (ML) algorithms, including parameters describing these field-specific conditions. Cross validation across the three years provided a realistic expectation of model prediction errors. A linear model with the addition of nonlinear predictors achieved competitive performance compared with more complex and less interpretable ML models. When MC was modeled as a function of days since heading, similar or better accuracy was achieved to using accumulated weather parameters. Moisture content was predicted with mean absolute error of 2.1 %. The predicted time from heading to harvest MC was improved by the inclusion of field-specific parameters (N and variety) from mean absolute error of 6.8 days to 5.7 days. The final linear regression model explained 80 % of the moisture variability in the dataset, and provided estimates of dry-down rates, moisture as a function of time, and time to reach harvest moisture. This study shows the importance of including field-specific parameters when estimating of rice harvest timing, and provides methods to model these effects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
轩儿轩完成签到 ,获得积分10
2秒前
友好的芷雪完成签到,获得积分10
2秒前
LL发布了新的文献求助10
2秒前
3秒前
YH完成签到,获得积分10
4秒前
SOBER发布了新的文献求助10
4秒前
5秒前
傲娇绿蕊发布了新的文献求助10
5秒前
顾矜应助Reborn采纳,获得10
5秒前
上官若男应助lcpppppp采纳,获得10
8秒前
核桃发布了新的文献求助10
8秒前
221发布了新的文献求助10
8秒前
失眠的冬易完成签到 ,获得积分10
8秒前
drew完成签到 ,获得积分10
9秒前
dreamode完成签到,获得积分10
9秒前
优美的梦玉完成签到,获得积分20
10秒前
星星完成签到,获得积分10
10秒前
舒心睿渊完成签到,获得积分20
10秒前
万能图书馆应助QQQ采纳,获得10
10秒前
李小强完成签到,获得积分10
10秒前
michael发布了新的文献求助10
11秒前
orixero应助xxy采纳,获得10
11秒前
隐形曼青应助康明雪采纳,获得10
11秒前
天天快乐应助球球泥惹111采纳,获得10
12秒前
ken131发布了新的文献求助20
12秒前
量子星尘发布了新的文献求助10
12秒前
nature应助清浅采纳,获得10
12秒前
14秒前
英俊的铭应助清河聂氏采纳,获得10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
Hello应助keyanniniz采纳,获得10
14秒前
swall5w完成签到,获得积分10
14秒前
16秒前
16秒前
魔丸学医完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956