The influence of nitrogen and variety on rice grain moisture content dry-down

干物质 含水量 线性回归 数学 水分 农学 氮气 非线性回归 回归分析 环境科学 统计 气象学 化学 地理 生物 岩土工程 有机化学 工程类
作者
James Brinkhoff,Brian W. Dunn,T. S. Dunn
出处
期刊:Field Crops Research [Elsevier]
卷期号:302: 109044-109044 被引量:1
标识
DOI:10.1016/j.fcr.2023.109044
摘要

Rice field management around maturity and harvest are some of the most difficult decisions growers face. Field drainage and harvest timing affect quality, yield, and post-harvest drying costs. These decisions are informed by grain moisture content (MC). Over three years, three sites and three varieties, we studied the field dry-down rate and time to optimal harvest MC. We showed that field-specific parameters significantly affected these characteristics, including rice variety, Nitrogen applied (NA), mid-season N uptake (NU) and dry matter (DM). Increased N and DM is associated with increased MC and thus delays time to harvest. We developed models based on linear regression and nonlinear machine learning (ML) algorithms, including parameters describing these field-specific conditions. Cross validation across the three years provided a realistic expectation of model prediction errors. A linear model with the addition of nonlinear predictors achieved competitive performance compared with more complex and less interpretable ML models. When MC was modeled as a function of days since heading, similar or better accuracy was achieved to using accumulated weather parameters. Moisture content was predicted with mean absolute error of 2.1 %. The predicted time from heading to harvest MC was improved by the inclusion of field-specific parameters (N and variety) from mean absolute error of 6.8 days to 5.7 days. The final linear regression model explained 80 % of the moisture variability in the dataset, and provided estimates of dry-down rates, moisture as a function of time, and time to reach harvest moisture. This study shows the importance of including field-specific parameters when estimating of rice harvest timing, and provides methods to model these effects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
梁帅哥完成签到,获得积分10
1秒前
2秒前
然然完成签到 ,获得积分10
3秒前
mimi完成签到,获得积分10
3秒前
七里香发布了新的文献求助10
3秒前
4秒前
沐song完成签到,获得积分10
5秒前
CLX。完成签到,获得积分10
5秒前
11发布了新的文献求助10
6秒前
8秒前
烟花应助英俊的尔容采纳,获得10
9秒前
善学以致用应助小年小少采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
李浩完成签到 ,获得积分10
12秒前
大个应助阿辉采纳,获得10
12秒前
13秒前
heisebeileimao完成签到,获得积分0
14秒前
顺利的囧发布了新的文献求助10
14秒前
俗人完成签到,获得积分10
14秒前
怡然蜻蜓完成签到,获得积分10
14秒前
15秒前
xiaoze完成签到 ,获得积分10
15秒前
16秒前
Tioner完成签到,获得积分10
17秒前
七里香发布了新的文献求助10
17秒前
往徕完成签到,获得积分10
19秒前
杨小鸿发布了新的文献求助10
20秒前
Cccsy完成签到 ,获得积分10
21秒前
22秒前
年华完成签到,获得积分10
22秒前
22秒前
luminious发布了新的文献求助10
23秒前
彭于晏应助zz采纳,获得10
23秒前
su完成签到,获得积分10
23秒前
李健应助唐唐采纳,获得10
24秒前
慕青应助沐song采纳,获得10
26秒前
阿辉发布了新的文献求助10
26秒前
27秒前
YAO完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742102
求助须知:如何正确求助?哪些是违规求助? 5405928
关于积分的说明 15343995
捐赠科研通 4883565
什么是DOI,文献DOI怎么找? 2625098
邀请新用户注册赠送积分活动 1573960
关于科研通互助平台的介绍 1530910