The influence of nitrogen and variety on rice grain moisture content dry-down

干物质 含水量 线性回归 数学 水分 农学 氮气 非线性回归 回归分析 环境科学 统计 气象学 化学 地理 生物 工程类 有机化学 岩土工程
作者
James Brinkhoff,Brian W. Dunn,T. S. Dunn
出处
期刊:Field Crops Research [Elsevier]
卷期号:302: 109044-109044 被引量:1
标识
DOI:10.1016/j.fcr.2023.109044
摘要

Rice field management around maturity and harvest are some of the most difficult decisions growers face. Field drainage and harvest timing affect quality, yield, and post-harvest drying costs. These decisions are informed by grain moisture content (MC). Over three years, three sites and three varieties, we studied the field dry-down rate and time to optimal harvest MC. We showed that field-specific parameters significantly affected these characteristics, including rice variety, Nitrogen applied (NA), mid-season N uptake (NU) and dry matter (DM). Increased N and DM is associated with increased MC and thus delays time to harvest. We developed models based on linear regression and nonlinear machine learning (ML) algorithms, including parameters describing these field-specific conditions. Cross validation across the three years provided a realistic expectation of model prediction errors. A linear model with the addition of nonlinear predictors achieved competitive performance compared with more complex and less interpretable ML models. When MC was modeled as a function of days since heading, similar or better accuracy was achieved to using accumulated weather parameters. Moisture content was predicted with mean absolute error of 2.1 %. The predicted time from heading to harvest MC was improved by the inclusion of field-specific parameters (N and variety) from mean absolute error of 6.8 days to 5.7 days. The final linear regression model explained 80 % of the moisture variability in the dataset, and provided estimates of dry-down rates, moisture as a function of time, and time to reach harvest moisture. This study shows the importance of including field-specific parameters when estimating of rice harvest timing, and provides methods to model these effects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
耶啵耶啵完成签到 ,获得积分10
1秒前
XL发布了新的文献求助10
1秒前
2秒前
小鱼应助等等采纳,获得10
2秒前
Jasper应助等等采纳,获得10
2秒前
2秒前
Hello应助粉色水蒸蛋采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
所所应助小吉麻麻采纳,获得10
4秒前
4秒前
世界小奇发布了新的文献求助10
4秒前
乐乐应助默默的含烟采纳,获得10
5秒前
ss发布了新的文献求助10
5秒前
5秒前
bjyx完成签到,获得积分10
6秒前
善学以致用应助111采纳,获得10
7秒前
loser发布了新的文献求助10
7秒前
7秒前
斯文若之发布了新的文献求助10
7秒前
走四方发布了新的文献求助10
7秒前
Ava应助yxy采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
XQJ发布了新的文献求助10
10秒前
11秒前
CUI完成签到,获得积分10
11秒前
11秒前
11秒前
ikutovaya完成签到,获得积分10
11秒前
畅快安白发布了新的文献求助10
12秒前
SciGPT应助研友_8QxayZ采纳,获得10
12秒前
脑洞疼应助璐璐核桃露采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679