Toward Explainable Artificial Intelligence for Precision Pathology

人工智能 计算机科学 仿形(计算机编程) 数字化病理学 精密医学 深度学习 数据科学 大数据 机器学习 人工智能应用 病理 医学 数据挖掘 操作系统
作者
Frederick Klauschen,Jonas Dippel,Philipp Keyl,Philipp Jurmeister,Michael Bockmayr,Andreas Möck,Oliver Buchstab,Maximilian Alber,Lukas Ruff,Grégoire Montavon,Klaus‐Robert Müller
出处
期刊:Annual Review of Pathology-mechanisms of Disease [Annual Reviews]
卷期号:19 (1) 被引量:1
标识
DOI:10.1146/annurev-pathmechdis-051222-113147
摘要

The rapid development of precision medicine in recent years has started to challenge diagnostic pathology with respect to its ability to analyze histological images and increasingly large molecular profiling data in a quantitative, integrative, and standardized way. Artificial intelligence (AI) and, more precisely, deep learning technologies have recently demonstrated the potential to facilitate complex data analysis tasks, including clinical, histological, and molecular data for disease classification; tissue biomarker quantification; and clinical outcome prediction. This review provides a general introduction to AI and describes recent developments with a focus on applications in diagnostic pathology and beyond. We explain limitations including the black-box character of conventional AI and describe solutions to make machine learning decisions more transparent with so-called explainable AI. The purpose of the review is to foster a mutual understanding of both the biomedical and the AI side. To that end, in addition to providing an overview of the relevant foundations in pathology and machine learning, we present worked-through examples for a better practical understanding of what AI can achieve and how it should be done. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 19 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默认用户名完成签到,获得积分10
1秒前
ssz完成签到 ,获得积分10
1秒前
okko完成签到,获得积分10
1秒前
2秒前
香蕉觅云应助纯情的道消采纳,获得10
2秒前
瞬间默念完成签到,获得积分10
2秒前
还魂灬祭发布了新的文献求助10
2秒前
2秒前
111发布了新的文献求助30
3秒前
顺利毕业发布了新的文献求助10
3秒前
3秒前
3秒前
雨齐完成签到,获得积分10
4秒前
田様应助Chhc2采纳,获得10
4秒前
椿·完成签到 ,获得积分10
4秒前
5秒前
苹果萧完成签到 ,获得积分10
5秒前
酷波er应助void科学家采纳,获得10
5秒前
忧伤的冰薇完成签到 ,获得积分10
5秒前
5秒前
6秒前
斯文媚颜完成签到 ,获得积分10
6秒前
zxy完成签到,获得积分10
6秒前
姜太公发布了新的文献求助10
7秒前
木子李完成签到,获得积分10
7秒前
7秒前
HGFJGK发布了新的文献求助10
7秒前
念与惜完成签到,获得积分10
8秒前
mym发布了新的文献求助10
9秒前
StevenZhao发布了新的文献求助10
9秒前
10秒前
狸宝的小果子完成签到 ,获得积分10
10秒前
我就是我完成签到,获得积分10
10秒前
tang发布了新的文献求助150
10秒前
11秒前
怕孤独的书兰完成签到,获得积分10
11秒前
12秒前
orixero应助漂亮的松思采纳,获得10
12秒前
顺利毕业完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307802
求助须知:如何正确求助?哪些是违规求助? 2941301
关于积分的说明 8502750
捐赠科研通 2615835
什么是DOI,文献DOI怎么找? 1429200
科研通“疑难数据库(出版商)”最低求助积分说明 663673
邀请新用户注册赠送积分活动 648644