亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Event-Triggered Distribution System State Estimation: Sparse Kalman Filtering with Reinforced Coupling

状态变量 卡尔曼滤波器 相量 事件(粒子物理) 相量测量单元 Lasso(编程语言) 计算机科学 稀疏矩阵 电力系统 算法 数学优化 功率(物理) 数学 人工智能 万维网 物理 高斯分布 热力学 量子力学
作者
Alireza Akrami,Hamed Mohsenian‐Rad
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:15 (1): 627-640
标识
DOI:10.1109/tsg.2023.3270421
摘要

A novel distribution system state estimation (DSSE) method is proposed for power distribution networks with low-observablity, where the measurements come from only a few distribution-level phasor measurement units (D-PMUs). The proposed DSSE method is event-triggered, which means the state variables are updated based on the information that is extracted from the events in the power distribution system. In this regard, the estimations of the state variables during the previous events are used as priori information to predict the state variables at the current event. Accordingly, a novel data-driven method based on elastic net regression analysis is proposed to learn the event-triggered state transition matrix. The DSSE problem is formulated as a generalized group Lasso problem, which is augmented based on the knowledge on the sparsity patterns of the state variables that are extracted from the analysis of the events. Here, in the absence of direct power measurements, we enhance our ability in sparse recovery by developing a new reinforced physics-based coupling method among the state variables, in which we add a novel set of linear differential power flow equations to the DSSE problem formulation in forms of virtual measurements. Finally, two different approaches are proposed to solve the formulated sparse event-triggered DSSE problem. The first approach is exact but computationally expensive, as it requires conducting a batch alternating direction method of multipliers (ADMM) analysis. The second approach is approximate, but it is much faster as it works based on a novel modified Kalman filter/smoother in the presence of ℓ1-norm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
玛琳卡迪马完成签到,获得积分10
5秒前
6秒前
A,w携念e行ོ完成签到,获得积分10
8秒前
Q哈哈哈发布了新的文献求助10
13秒前
hhh123发布了新的文献求助20
22秒前
24秒前
spark810完成签到,获得积分0
25秒前
29秒前
42秒前
xiongyh10完成签到,获得积分10
52秒前
小西完成签到 ,获得积分10
1分钟前
星辰大海应助龚幻梦采纳,获得20
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
龚幻梦发布了新的文献求助20
1分钟前
2分钟前
2分钟前
通科研完成签到 ,获得积分10
2分钟前
3分钟前
jerry发布了新的文献求助10
3分钟前
3分钟前
聂白晴完成签到,获得积分20
3分钟前
聂白晴发布了新的文献求助10
3分钟前
3分钟前
jerry完成签到 ,获得积分20
3分钟前
ling361完成签到,获得积分10
3分钟前
爆米花应助聂白晴采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
4分钟前
昭荃完成签到 ,获得积分10
4分钟前
小二郎应助gy采纳,获得10
4分钟前
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
5分钟前
五花肉发布了新的文献求助20
5分钟前
金豆豆发布了新的文献求助10
5分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229679
求助须知:如何正确求助?哪些是违规求助? 2877243
关于积分的说明 8198555
捐赠科研通 2544698
什么是DOI,文献DOI怎么找? 1374568
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621806