Utilizing YOLOv8 for enhanced traffic monitoring in intelligent transportation systems (ITS) applications

计算机科学 智能交通系统 运输工程 实时计算 工程类
作者
Murat Bakırcı
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:152: 104594-104594 被引量:6
标识
DOI:10.1016/j.dsp.2024.104594
摘要

The increasing demand for artificial intelligence-based motor vehicle detection in Intelligent Transportation Systems (ITS) applications highlights the significance of advancements in this field. The introduction of YOLOv8, the latest iteration in the YOLO algorithm series, presents a new avenue for exploring the potential of this detection algorithm within the ITS domain. The algorithm has not been previously tested in applications such as vehicle detection, which highlights a gap in the existing literature. This presents an opportunity to explore its capabilities and contributions in traffic monitoring and vehicle detection. This study aims to address this gap by employing YOLOv8 for vehicle detection within the broader context of ITS applications. Distinguishing itself from its predecessors, YOLOv8 features a decoupled head structure and employs a C2f module instead of C3. Extensive testing was performed using datasets acquired through aerial monitoring with a drone. Special emphasis was placed on ensuring a diverse array of target objects during dataset creation, a detail frequently neglected in comparable studies. The algorithm's training not only facilitated an evaluation of its ability to generalize and process data proficiently but also provided initial insights into its potential for real-time applications. The model underwent a comprehensive series of performance tests, revealing both strengths and weaknesses and outlining its capabilities and limitations. In a comparative analysis, the study systematically compared the performance metrics of YOLOv8 with those of YOLOv5, a widely adopted model in ITS research. Precision assessments unveiled a significant disparity, with YOLOv8 exhibiting an 18% increase in precision compared to YOLOv5. Further investigation into the inference times of both algorithms highlighted the superior processing speed performance of YOLOv8. The study's findings shed light on the limitations of the detection process, attributing misclassifications to factors such as variations in vehicle shapes, lighting conditions, and relative sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助ddd采纳,获得10
刚刚
hh发布了新的文献求助10
刚刚
刚刚
姜姜姜发布了新的文献求助10
1秒前
祺祺完成签到 ,获得积分10
2秒前
庾天磊完成签到 ,获得积分10
2秒前
haojiaolv完成签到,获得积分10
3秒前
Reeee发布了新的文献求助10
3秒前
英姑应助苏摩i采纳,获得10
4秒前
JamesPei应助趙途嘵生采纳,获得10
4秒前
5秒前
五块钱发布了新的文献求助10
5秒前
5秒前
高高白曼舞完成签到,获得积分10
5秒前
6秒前
赘婿应助泛滥空间采纳,获得10
7秒前
小二郎应助友好的蝉采纳,获得30
7秒前
7秒前
8秒前
小袁完成签到,获得积分20
8秒前
美满艳发布了新的文献求助10
9秒前
所所应助姜姜姜采纳,获得10
9秒前
筱澍发布了新的文献求助10
10秒前
leo发布了新的文献求助10
10秒前
科研通AI5应助搞怪的音响采纳,获得10
10秒前
kiki完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
家伟发布了新的文献求助20
12秒前
13秒前
科研通AI2S应助js110采纳,获得10
13秒前
14秒前
14秒前
domingo发布了新的文献求助10
14秒前
14秒前
打打应助linshiba_18采纳,获得30
15秒前
15秒前
15秒前
JamesPei应助科研通管家采纳,获得10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668189
求助须知:如何正确求助?哪些是违规求助? 3226562
关于积分的说明 9770261
捐赠科研通 2936503
什么是DOI,文献DOI怎么找? 1608620
邀请新用户注册赠送积分活动 759734
科研通“疑难数据库(出版商)”最低求助积分说明 735521