已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Utilizing YOLOv8 for enhanced traffic monitoring in intelligent transportation systems (ITS) applications

计算机科学 智能交通系统 运输工程 实时计算 工程类
作者
Murat Bakırcı
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:152: 104594-104594 被引量:43
标识
DOI:10.1016/j.dsp.2024.104594
摘要

The increasing demand for artificial intelligence-based motor vehicle detection in Intelligent Transportation Systems (ITS) applications highlights the significance of advancements in this field. The introduction of YOLOv8, the latest iteration in the YOLO algorithm series, presents a new avenue for exploring the potential of this detection algorithm within the ITS domain. The algorithm has not been previously tested in applications such as vehicle detection, which highlights a gap in the existing literature. This presents an opportunity to explore its capabilities and contributions in traffic monitoring and vehicle detection. This study aims to address this gap by employing YOLOv8 for vehicle detection within the broader context of ITS applications. Distinguishing itself from its predecessors, YOLOv8 features a decoupled head structure and employs a C2f module instead of C3. Extensive testing was performed using datasets acquired through aerial monitoring with a drone. Special emphasis was placed on ensuring a diverse array of target objects during dataset creation, a detail frequently neglected in comparable studies. The algorithm's training not only facilitated an evaluation of its ability to generalize and process data proficiently but also provided initial insights into its potential for real-time applications. The model underwent a comprehensive series of performance tests, revealing both strengths and weaknesses and outlining its capabilities and limitations. In a comparative analysis, the study systematically compared the performance metrics of YOLOv8 with those of YOLOv5, a widely adopted model in ITS research. Precision assessments unveiled a significant disparity, with YOLOv8 exhibiting an 18% increase in precision compared to YOLOv5. Further investigation into the inference times of both algorithms highlighted the superior processing speed performance of YOLOv8. The study's findings shed light on the limitations of the detection process, attributing misclassifications to factors such as variations in vehicle shapes, lighting conditions, and relative sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Only1完成签到,获得积分10
1秒前
轻松笙完成签到,获得积分10
2秒前
小张同学完成签到 ,获得积分10
5秒前
DChen完成签到 ,获得积分10
6秒前
嘟嘟雯完成签到 ,获得积分10
7秒前
7秒前
情怀应助琬碗采纳,获得30
8秒前
Liangyong_Fu完成签到 ,获得积分10
8秒前
9秒前
Only1发布了新的文献求助10
9秒前
昵称完成签到,获得积分10
9秒前
9秒前
土豆你个西红柿完成签到 ,获得积分10
10秒前
小丸子完成签到,获得积分10
11秒前
Dlan完成签到,获得积分10
11秒前
Aliya完成签到 ,获得积分10
11秒前
dadabad完成签到 ,获得积分10
12秒前
xixiYa_发布了新的文献求助10
13秒前
小蘑菇应助小肥采纳,获得10
13秒前
jjj完成签到 ,获得积分10
14秒前
在水一方应助xuyidan采纳,获得10
14秒前
张zz完成签到 ,获得积分10
14秒前
dly完成签到 ,获得积分10
14秒前
坚强的缘分完成签到,获得积分10
15秒前
Criminology34应助chd采纳,获得10
15秒前
山东老铁完成签到 ,获得积分10
16秒前
沉梦昂志_hzy完成签到,获得积分0
17秒前
19秒前
19秒前
21秒前
乳酸菌小面包完成签到,获得积分10
21秒前
凤里完成签到 ,获得积分10
23秒前
朱明完成签到 ,获得积分10
24秒前
性感母蟑螂完成签到 ,获得积分10
24秒前
25秒前
小肥发布了新的文献求助10
26秒前
33完成签到,获得积分10
27秒前
阿峤完成签到,获得积分10
28秒前
iman完成签到,获得积分10
29秒前
小文cremen完成签到 ,获得积分10
29秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386