Utilizing YOLOv8 for enhanced traffic monitoring in intelligent transportation systems (ITS) applications

计算机科学 智能交通系统 运输工程 实时计算 工程类
作者
Murat Bakırcı
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:152: 104594-104594 被引量:43
标识
DOI:10.1016/j.dsp.2024.104594
摘要

The increasing demand for artificial intelligence-based motor vehicle detection in Intelligent Transportation Systems (ITS) applications highlights the significance of advancements in this field. The introduction of YOLOv8, the latest iteration in the YOLO algorithm series, presents a new avenue for exploring the potential of this detection algorithm within the ITS domain. The algorithm has not been previously tested in applications such as vehicle detection, which highlights a gap in the existing literature. This presents an opportunity to explore its capabilities and contributions in traffic monitoring and vehicle detection. This study aims to address this gap by employing YOLOv8 for vehicle detection within the broader context of ITS applications. Distinguishing itself from its predecessors, YOLOv8 features a decoupled head structure and employs a C2f module instead of C3. Extensive testing was performed using datasets acquired through aerial monitoring with a drone. Special emphasis was placed on ensuring a diverse array of target objects during dataset creation, a detail frequently neglected in comparable studies. The algorithm's training not only facilitated an evaluation of its ability to generalize and process data proficiently but also provided initial insights into its potential for real-time applications. The model underwent a comprehensive series of performance tests, revealing both strengths and weaknesses and outlining its capabilities and limitations. In a comparative analysis, the study systematically compared the performance metrics of YOLOv8 with those of YOLOv5, a widely adopted model in ITS research. Precision assessments unveiled a significant disparity, with YOLOv8 exhibiting an 18% increase in precision compared to YOLOv5. Further investigation into the inference times of both algorithms highlighted the superior processing speed performance of YOLOv8. The study's findings shed light on the limitations of the detection process, attributing misclassifications to factors such as variations in vehicle shapes, lighting conditions, and relative sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
一枪入魂完成签到,获得积分10
1秒前
万能图书馆应助陽15采纳,获得10
2秒前
缥缈的艳发布了新的文献求助30
2秒前
桐桐应助天气不似预期采纳,获得10
2秒前
幽芊细雨完成签到,获得积分10
2秒前
安详的宝马关注了科研通微信公众号
3秒前
小策发布了新的文献求助10
3秒前
哇芽完成签到,获得积分20
3秒前
大模型应助YGTRECE采纳,获得10
3秒前
enen发布了新的文献求助30
4秒前
墨客完成签到,获得积分20
4秒前
5秒前
5秒前
优美巨人发布了新的文献求助10
5秒前
6秒前
niqiu发布了新的文献求助20
7秒前
7秒前
小红花完成签到,获得积分10
7秒前
Akim应助封尘逸动采纳,获得10
7秒前
Henry完成签到,获得积分10
7秒前
7秒前
怕孤独的广缘完成签到 ,获得积分10
7秒前
Hello应助xiao采纳,获得10
7秒前
8秒前
8秒前
陈洋发布了新的文献求助10
8秒前
y13333完成签到,获得积分10
9秒前
Su完成签到,获得积分20
9秒前
9秒前
9秒前
嘟嘟完成签到 ,获得积分10
10秒前
青山随云走完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
MLT发布了新的文献求助10
10秒前
11秒前
纯情女大发布了新的文献求助10
11秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205400
求助须知:如何正确求助?哪些是违规求助? 4384092
关于积分的说明 13652042
捐赠科研通 4242237
什么是DOI,文献DOI怎么找? 2327262
邀请新用户注册赠送积分活动 1325047
关于科研通互助平台的介绍 1277269