UTILIZING YOLOv8 for ENHANCED TRAFFIC MONITORING in INTELLIGENT TRANSPORTATION SYSTEMS (ITS) APPLICATIONS

计算机科学 智能交通系统 运输工程 实时计算 工程类
作者
Murat Bakırcı
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:152: 104594-104594
标识
DOI:10.1016/j.dsp.2024.104594
摘要

The increasing demand for artificial intelligence-based motor vehicle detection in Intelligent Transportation Systems (ITS) applications highlights the significance of advancements in this field. The introduction of YOLOv8, the latest iteration in the YOLO algorithm series, presents a new avenue for exploring the potential of this detection algorithm within the ITS domain. The algorithm has not been previously tested in applications such as vehicle detection, which highlights a gap in the existing literature. This presents an opportunity to explore its capabilities and contributions in traffic monitoring and vehicle detection. This study aims to address this gap by employing YOLOv8 for vehicle detection within the broader context of ITS applications. Distinguishing itself from its predecessors, YOLOv8 features a decoupled head structure and employs a C2f module instead of C3. Extensive testing was performed using datasets acquired through aerial monitoring with a drone. Special emphasis was placed on ensuring a diverse array of target objects during dataset creation, a detail frequently neglected in comparable studies. The algorithm's training not only facilitated an evaluation of its ability to generalize and process data proficiently but also provided initial insights into its potential for real-time applications. The model underwent a comprehensive series of performance tests, revealing both strengths and weaknesses and outlining its capabilities and limitations. In a comparative analysis, the study systematically compared the performance metrics of YOLOv8 with those of YOLOv5, a widely adopted model in ITS research. Precision assessments unveiled a significant disparity, with YOLOv8 exhibiting an 18% increase in precision compared to YOLOv5. Further investigation into the inference times of both algorithms highlighted the superior processing speed performance of YOLOv8. The study's findings shed light on the limitations of the detection process, attributing misclassifications to factors such as variations in vehicle shapes, lighting conditions, and relative sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ss要顺利毕业呀完成签到,获得积分20
刚刚
顾矜应助巴达天使采纳,获得10
2秒前
阿尔忒弥斯完成签到,获得积分10
3秒前
塑料做的蜻蜓完成签到,获得积分10
3秒前
5秒前
5秒前
zzzzzzzzzzzz发布了新的文献求助10
6秒前
222完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
Tomice完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
霸气鹏飞发布了新的文献求助10
10秒前
coldspringhao完成签到,获得积分10
10秒前
10秒前
Tomice发布了新的文献求助10
11秒前
12秒前
研友_Zrl2pL完成签到,获得积分20
12秒前
小糯米发布了新的文献求助10
12秒前
桔梗发布了新的文献求助10
12秒前
虚心醉蝶发布了新的文献求助10
13秒前
CipherSage应助LL采纳,获得10
13秒前
Jason完成签到,获得积分10
13秒前
耶耶喵喵完成签到 ,获得积分10
13秒前
嘟嘟发布了新的文献求助10
13秒前
机灵飞兰发布了新的文献求助10
13秒前
15秒前
研友_Zrl2pL发布了新的文献求助10
15秒前
雨水发布了新的文献求助10
15秒前
landewen发布了新的文献求助10
15秒前
curtisness应助william_nieh采纳,获得10
16秒前
ahaaa发布了新的文献求助10
16秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137260
求助须知:如何正确求助?哪些是违规求助? 2788392
关于积分的说明 7785921
捐赠科研通 2444458
什么是DOI,文献DOI怎么找? 1299916
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023