Utilizing YOLOv8 for enhanced traffic monitoring in intelligent transportation systems (ITS) applications

计算机科学 智能交通系统 运输工程 实时计算 工程类
作者
Murat Bakırcı
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:152: 104594-104594 被引量:24
标识
DOI:10.1016/j.dsp.2024.104594
摘要

The increasing demand for artificial intelligence-based motor vehicle detection in Intelligent Transportation Systems (ITS) applications highlights the significance of advancements in this field. The introduction of YOLOv8, the latest iteration in the YOLO algorithm series, presents a new avenue for exploring the potential of this detection algorithm within the ITS domain. The algorithm has not been previously tested in applications such as vehicle detection, which highlights a gap in the existing literature. This presents an opportunity to explore its capabilities and contributions in traffic monitoring and vehicle detection. This study aims to address this gap by employing YOLOv8 for vehicle detection within the broader context of ITS applications. Distinguishing itself from its predecessors, YOLOv8 features a decoupled head structure and employs a C2f module instead of C3. Extensive testing was performed using datasets acquired through aerial monitoring with a drone. Special emphasis was placed on ensuring a diverse array of target objects during dataset creation, a detail frequently neglected in comparable studies. The algorithm's training not only facilitated an evaluation of its ability to generalize and process data proficiently but also provided initial insights into its potential for real-time applications. The model underwent a comprehensive series of performance tests, revealing both strengths and weaknesses and outlining its capabilities and limitations. In a comparative analysis, the study systematically compared the performance metrics of YOLOv8 with those of YOLOv5, a widely adopted model in ITS research. Precision assessments unveiled a significant disparity, with YOLOv8 exhibiting an 18% increase in precision compared to YOLOv5. Further investigation into the inference times of both algorithms highlighted the superior processing speed performance of YOLOv8. The study's findings shed light on the limitations of the detection process, attributing misclassifications to factors such as variations in vehicle shapes, lighting conditions, and relative sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
如意枫叶发布了新的文献求助10
2秒前
Lost发布了新的文献求助30
2秒前
风清扬应助呜呜呜采纳,获得10
3秒前
Lucas应助xyx采纳,获得10
4秒前
guoguo发布了新的文献求助10
4秒前
乂贰ZERO叁发布了新的文献求助10
4秒前
5秒前
可爱的函函应助Steven采纳,获得10
5秒前
ay完成签到,获得积分10
7秒前
蒙豆儿发布了新的文献求助10
7秒前
7秒前
Owen应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得20
8秒前
哈哈哈应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
泥嚎发布了新的文献求助10
10秒前
guoguo完成签到,获得积分10
10秒前
搜集达人应助麦子采纳,获得10
13秒前
小方发布了新的文献求助30
14秒前
JDT77发布了新的文献求助200
16秒前
暴躁的幼荷完成签到 ,获得积分10
17秒前
时老完成签到,获得积分10
18秒前
wmc1357完成签到,获得积分10
18秒前
19秒前
研友_VZG7GZ应助大喵采纳,获得10
19秒前
香蕉觅云应助YZF采纳,获得10
22秒前
24秒前
25秒前
25秒前
25秒前
裴向雪发布了新的文献求助10
28秒前
蒙扎完成签到,获得积分20
30秒前
30秒前
冷静茉莉完成签到 ,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176