Utilizing YOLOv8 for enhanced traffic monitoring in intelligent transportation systems (ITS) applications

计算机科学 智能交通系统 运输工程 实时计算 工程类
作者
Murat Bakırcı
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:152: 104594-104594 被引量:43
标识
DOI:10.1016/j.dsp.2024.104594
摘要

The increasing demand for artificial intelligence-based motor vehicle detection in Intelligent Transportation Systems (ITS) applications highlights the significance of advancements in this field. The introduction of YOLOv8, the latest iteration in the YOLO algorithm series, presents a new avenue for exploring the potential of this detection algorithm within the ITS domain. The algorithm has not been previously tested in applications such as vehicle detection, which highlights a gap in the existing literature. This presents an opportunity to explore its capabilities and contributions in traffic monitoring and vehicle detection. This study aims to address this gap by employing YOLOv8 for vehicle detection within the broader context of ITS applications. Distinguishing itself from its predecessors, YOLOv8 features a decoupled head structure and employs a C2f module instead of C3. Extensive testing was performed using datasets acquired through aerial monitoring with a drone. Special emphasis was placed on ensuring a diverse array of target objects during dataset creation, a detail frequently neglected in comparable studies. The algorithm's training not only facilitated an evaluation of its ability to generalize and process data proficiently but also provided initial insights into its potential for real-time applications. The model underwent a comprehensive series of performance tests, revealing both strengths and weaknesses and outlining its capabilities and limitations. In a comparative analysis, the study systematically compared the performance metrics of YOLOv8 with those of YOLOv5, a widely adopted model in ITS research. Precision assessments unveiled a significant disparity, with YOLOv8 exhibiting an 18% increase in precision compared to YOLOv5. Further investigation into the inference times of both algorithms highlighted the superior processing speed performance of YOLOv8. The study's findings shed light on the limitations of the detection process, attributing misclassifications to factors such as variations in vehicle shapes, lighting conditions, and relative sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
最好的我们完成签到,获得积分20
刚刚
刚刚
1秒前
7747完成签到 ,获得积分10
2秒前
Accept发布了新的文献求助10
2秒前
CC66完成签到,获得积分10
3秒前
3秒前
小杭76应助四维虫子采纳,获得10
3秒前
长安完成签到,获得积分20
4秒前
汉堡包应助TT采纳,获得30
5秒前
张力航完成签到,获得积分10
5秒前
6秒前
梁业松完成签到,获得积分10
6秒前
7秒前
丘比特应助SYLJ采纳,获得10
7秒前
烟花应助SYLJ采纳,获得10
7秒前
王明宇完成签到,获得积分10
7秒前
大头完成签到,获得积分10
8秒前
JamesPei应助幽默厉采纳,获得10
8秒前
yyyyyy发布了新的文献求助10
9秒前
完美世界应助starry采纳,获得10
9秒前
丹妮发布了新的文献求助10
9秒前
无情无心完成签到,获得积分10
9秒前
sakria应助医学生的小宝库采纳,获得10
9秒前
小杭76应助LEI采纳,获得10
9秒前
健忘的学生完成签到,获得积分20
10秒前
隐形曼青应助小为采纳,获得10
11秒前
wyh发布了新的文献求助10
11秒前
传奇3应助kk子采纳,获得10
11秒前
12秒前
cc发布了新的文献求助20
12秒前
guozizi发布了新的文献求助10
12秒前
唯梦发布了新的文献求助10
13秒前
___赵完成签到,获得积分10
14秒前
14秒前
贤弟完成签到,获得积分10
14秒前
大桔子完成签到,获得积分10
15秒前
16秒前
16秒前
元问晴发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879