Transformer Autoencoder for K-means Efficient clustering

计算机科学 自编码 聚类分析 变压器 k均值聚类 人工智能 数据挖掘 模式识别(心理学) 人工神经网络 电气工程 电压 工程类
作者
Wenhao Wu,Weiwei Wang,Xixi Jia,Xiangchu Feng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108612-108612 被引量:8
标识
DOI:10.1016/j.engappai.2024.108612
摘要

As a fundamental unsupervised learning task, clustering has been widely applied in exploratory data analysis in the fields of computer vision, pattern recognition, and data mining. Among existing clustering methods, K-means is the most popular one due to its simplicity and computational efficiency. However, the ubiquitous high dimensionality challenges the effectiveness and the efficiency of the K-means algorithm. Fortunately, the deep neural network provides a powerful resolution for learning low dimensional feature. To optimize the feature learning and the K-means clustering jointly, we present a new deep clustering network called Transformer AutoEncoder for K-means Efficient clustering (TAKE). It consists of two modules: the Transformer AutoEncoder (TAE) for feature learning and the KNet for clustering. The TAE incorporates the transformer structure to learn global features and the contrastive learning mechanism to enhance feature discrimination. The KNet is constructed by unrolling the accelerated projected gradient descent iterations of the relaxed K-means model. The network is trained in two phases: pretraining and clustering. In pretraining, the TAE is optimized by minimizing the cosine similarity-based reconstruction loss, the contrastive loss (CL) and the convex combination loss (CCL). The CCL encourages features of augmented neighbor data to lie in a convex hull, thus K-means friendly. In the clustering phase, the TAE and the KNet are optimized jointly by minimizing the reconstruction loss and the K-means clustering loss. The clustering results are obtained by the forward inference of the KNet. Extended experiments show that our proposed method is highly effective in unsupervised representation learning and clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得50
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
Ava应助飘逸的山柏采纳,获得10
1秒前
4秒前
5秒前
6秒前
小蘑菇应助liu采纳,获得10
6秒前
吴鸣拭发布了新的文献求助10
9秒前
岸芷诺苏发布了新的文献求助10
10秒前
科目三应助Emily采纳,获得10
12秒前
周大琳发布了新的文献求助10
13秒前
HuFan1201完成签到 ,获得积分10
13秒前
固的曼完成签到,获得积分10
15秒前
爱科研的小潘完成签到,获得积分10
15秒前
梨子完成签到,获得积分10
19秒前
645654564完成签到,获得积分20
23秒前
天天快乐应助岸芷诺苏采纳,获得10
24秒前
29秒前
30秒前
30秒前
Akim应助zj杰采纳,获得10
31秒前
英俊的铭应助北风采纳,获得10
31秒前
645654564关注了科研通微信公众号
31秒前
33秒前
Emily发布了新的文献求助10
34秒前
yurunxintian发布了新的文献求助10
35秒前
打打应助wiwin采纳,获得10
35秒前
WHEN发布了新的文献求助10
35秒前
37秒前
38秒前
38秒前
fmsai关注了科研通微信公众号
39秒前
高文强完成签到,获得积分10
39秒前
yu完成签到,获得积分10
39秒前
39秒前
张思涵完成签到,获得积分10
41秒前
糖果乖乖完成签到 ,获得积分10
41秒前
小蘑菇应助YANG采纳,获得10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669998
求助须知:如何正确求助?哪些是违规求助? 3227414
关于积分的说明 9775372
捐赠科研通 2937577
什么是DOI,文献DOI怎么找? 1609384
邀请新用户注册赠送积分活动 760339
科研通“疑难数据库(出版商)”最低求助积分说明 735792