Comparison and evaluation of dimensionality reduction techniques for the numerical simulations of unsteady cavitation

等距映射 主成分分析 降维 聚类分析 模式识别(心理学) 非线性系统 层次聚类 人工智能 非线性降维 计算机科学 维数之咒 数据挖掘 物理 量子力学
作者
Guiyong Zhang,Zihao Wang,Huakun Huang,Hang Li,Tiezhi Sun
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:16
标识
DOI:10.1063/5.0161471
摘要

In the field of fluid mechanics, dimensionality reduction (DR) is widely used for feature extraction and information simplification of high-dimensional spatiotemporal data. It is well known that nonlinear DR techniques outperform linear methods, and this conclusion may have reached a consensus in the field of fluid mechanics. However, this conclusion is derived from an incomplete evaluation of the DR techniques. In this paper, we propose a more comprehensive evaluation system for DR methods and compare and evaluate the performance differences of three DR methods: principal component analysis (PCA), isometric mapping (isomap), and independent component analysis (ICA), when applied to cavitation flow fields. The numerical results of the cavitation flow are obtained by solving the compressible homogeneous mixture model. First, three different error metrics are used to comprehensively evaluate reconstruction errors. Isomap significantly improves the preservation of nonlinear information and retains the most information with the fewest modes. Second, Pearson correlation can be used to measure the overall structural characteristics of the data, while dynamic time warping cannot. PCA performs the best in preserving the overall data characteristics. In addition, based on the uniform sampling-based K-means clustering proposed in this paper, it becomes possible to evaluate the local structural characteristics of the data using clustering similarity. PCA still demonstrates better capability in preserving local data structures. Finally, flow patterns are used to evaluate the recognition performance of flow features. PCA focuses more on identifying the major information in the flow field, while isomap emphasizes identifying more nonlinear information. ICA can mathematically obtain more meaningful independent patterns. In conclusion, each DR algorithm has its own strengths and limitations. Improving evaluation methods to help select the most suitable DR algorithm is more meaningful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
dao发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得30
5秒前
无花果应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
葉鳳怡完成签到 ,获得积分10
5秒前
6秒前
烟花应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
orangel完成签到,获得积分10
10秒前
13秒前
小浣熊爱甜甜圈完成签到 ,获得积分10
13秒前
llllzzh完成签到 ,获得积分10
15秒前
孤独念柏完成签到,获得积分10
15秒前
酷波er应助seven采纳,获得10
16秒前
充电宝应助勤奋的草丛采纳,获得10
16秒前
16秒前
LXL完成签到,获得积分10
17秒前
chocolate发布了新的文献求助10
17秒前
17秒前
边婧韬完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
Angora完成签到,获得积分10
20秒前
眉姐姐的藕粉桂花糖糕完成签到,获得积分10
21秒前
边婧韬发布了新的文献求助10
23秒前
Dvus完成签到,获得积分20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4912095
求助须知:如何正确求助?哪些是违规求助? 4187304
关于积分的说明 13003664
捐赠科研通 3955373
什么是DOI,文献DOI怎么找? 2168696
邀请新用户注册赠送积分活动 1187211
关于科研通互助平台的介绍 1094459