Comparison and evaluation of dimensionality reduction techniques for the numerical simulations of unsteady cavitation

等距映射 主成分分析 降维 聚类分析 模式识别(心理学) 非线性系统 层次聚类 人工智能 非线性降维 计算机科学 维数之咒 数据挖掘 物理 量子力学
作者
Guiyong Zhang,Zihao Wang,Huakun Huang,Hang Li,Tiezhi Sun
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:16
标识
DOI:10.1063/5.0161471
摘要

In the field of fluid mechanics, dimensionality reduction (DR) is widely used for feature extraction and information simplification of high-dimensional spatiotemporal data. It is well known that nonlinear DR techniques outperform linear methods, and this conclusion may have reached a consensus in the field of fluid mechanics. However, this conclusion is derived from an incomplete evaluation of the DR techniques. In this paper, we propose a more comprehensive evaluation system for DR methods and compare and evaluate the performance differences of three DR methods: principal component analysis (PCA), isometric mapping (isomap), and independent component analysis (ICA), when applied to cavitation flow fields. The numerical results of the cavitation flow are obtained by solving the compressible homogeneous mixture model. First, three different error metrics are used to comprehensively evaluate reconstruction errors. Isomap significantly improves the preservation of nonlinear information and retains the most information with the fewest modes. Second, Pearson correlation can be used to measure the overall structural characteristics of the data, while dynamic time warping cannot. PCA performs the best in preserving the overall data characteristics. In addition, based on the uniform sampling-based K-means clustering proposed in this paper, it becomes possible to evaluate the local structural characteristics of the data using clustering similarity. PCA still demonstrates better capability in preserving local data structures. Finally, flow patterns are used to evaluate the recognition performance of flow features. PCA focuses more on identifying the major information in the flow field, while isomap emphasizes identifying more nonlinear information. ICA can mathematically obtain more meaningful independent patterns. In conclusion, each DR algorithm has its own strengths and limitations. Improving evaluation methods to help select the most suitable DR algorithm is more meaningful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crescent完成签到 ,获得积分10
刚刚
无奈傲菡发布了新的文献求助10
刚刚
烟花应助123号采纳,获得10
3秒前
超帅的遥完成签到,获得积分10
3秒前
Zxc完成签到,获得积分10
4秒前
lbt完成签到 ,获得积分10
5秒前
yao完成签到 ,获得积分10
6秒前
6秒前
8秒前
9秒前
9秒前
doudou完成签到 ,获得积分10
9秒前
BCS完成签到,获得积分10
9秒前
领导范儿应助KYN采纳,获得10
9秒前
10秒前
独特的莫言完成签到,获得积分10
12秒前
lin发布了新的文献求助10
13秒前
aero完成签到 ,获得积分10
15秒前
123号完成签到,获得积分10
17秒前
充电宝应助TT采纳,获得10
19秒前
20秒前
20秒前
英姑应助荒野星辰采纳,获得10
22秒前
22秒前
YHY完成签到,获得积分10
24秒前
科研通AI5应助魏伯安采纳,获得10
24秒前
caoyy发布了新的文献求助10
24秒前
25秒前
26秒前
张喻235532完成签到,获得积分10
27秒前
失眠虔纹发布了新的文献求助10
28秒前
香蕉觅云应助糊涂的小伙采纳,获得10
28秒前
28秒前
sutharsons应助科研通管家采纳,获得200
30秒前
打打应助科研通管家采纳,获得10
30秒前
axin应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
上官若男应助科研通管家采纳,获得10
30秒前
无花果应助科研通管家采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849