Comparison and evaluation of dimensionality reduction techniques for the numerical simulations of unsteady cavitation

等距映射 主成分分析 降维 聚类分析 模式识别(心理学) 非线性系统 层次聚类 人工智能 非线性降维 计算机科学 维数之咒 数据挖掘 物理 量子力学
作者
Guiyong Zhang,Zihao Wang,Huakun Huang,Hang Li,Tiezhi Sun
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:16
标识
DOI:10.1063/5.0161471
摘要

In the field of fluid mechanics, dimensionality reduction (DR) is widely used for feature extraction and information simplification of high-dimensional spatiotemporal data. It is well known that nonlinear DR techniques outperform linear methods, and this conclusion may have reached a consensus in the field of fluid mechanics. However, this conclusion is derived from an incomplete evaluation of the DR techniques. In this paper, we propose a more comprehensive evaluation system for DR methods and compare and evaluate the performance differences of three DR methods: principal component analysis (PCA), isometric mapping (isomap), and independent component analysis (ICA), when applied to cavitation flow fields. The numerical results of the cavitation flow are obtained by solving the compressible homogeneous mixture model. First, three different error metrics are used to comprehensively evaluate reconstruction errors. Isomap significantly improves the preservation of nonlinear information and retains the most information with the fewest modes. Second, Pearson correlation can be used to measure the overall structural characteristics of the data, while dynamic time warping cannot. PCA performs the best in preserving the overall data characteristics. In addition, based on the uniform sampling-based K-means clustering proposed in this paper, it becomes possible to evaluate the local structural characteristics of the data using clustering similarity. PCA still demonstrates better capability in preserving local data structures. Finally, flow patterns are used to evaluate the recognition performance of flow features. PCA focuses more on identifying the major information in the flow field, while isomap emphasizes identifying more nonlinear information. ICA can mathematically obtain more meaningful independent patterns. In conclusion, each DR algorithm has its own strengths and limitations. Improving evaluation methods to help select the most suitable DR algorithm is more meaningful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wcy完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
Lucas选李华完成签到 ,获得积分10
1秒前
1秒前
1秒前
orixero应助Hannah采纳,获得10
1秒前
poem发布了新的文献求助10
2秒前
我是老大应助xiaomili采纳,获得10
2秒前
搜集达人应助青青在努力采纳,获得10
3秒前
3秒前
3秒前
happyfei发布了新的文献求助10
4秒前
mmol完成签到,获得积分10
4秒前
4秒前
聪慧千亦发布了新的文献求助10
4秒前
weixiaozdw完成签到,获得积分10
4秒前
5秒前
外向跳跳糖完成签到,获得积分20
5秒前
孙福禄应助机智一曲采纳,获得10
5秒前
forever完成签到,获得积分10
6秒前
萧小五发布了新的文献求助10
6秒前
抹茶夏天完成签到,获得积分10
6秒前
小燕子完成签到 ,获得积分10
7秒前
南至发布了新的文献求助10
7秒前
李哈哈发布了新的文献求助10
7秒前
8秒前
大眼睛土豆完成签到,获得积分10
8秒前
高大的天道完成签到,获得积分10
8秒前
8秒前
隐形曼青应助卡卡龍特采纳,获得200
8秒前
8秒前
Hello应助满天星采纳,获得10
8秒前
英俊的铭应助迅速雨琴采纳,获得10
9秒前
10秒前
謓言发布了新的文献求助10
10秒前
Jadedew发布了新的文献求助10
10秒前
10秒前
聪明的豌豆完成签到,获得积分10
11秒前
huhu发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620