亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison and evaluation of dimensionality reduction techniques for the numerical simulations of unsteady cavitation

等距映射 主成分分析 降维 聚类分析 模式识别(心理学) 非线性系统 层次聚类 人工智能 非线性降维 计算机科学 维数之咒 数据挖掘 物理 量子力学
作者
Guiyong Zhang,Zihao Wang,Huakun Huang,Hang Li,Tiezhi Sun
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:16
标识
DOI:10.1063/5.0161471
摘要

In the field of fluid mechanics, dimensionality reduction (DR) is widely used for feature extraction and information simplification of high-dimensional spatiotemporal data. It is well known that nonlinear DR techniques outperform linear methods, and this conclusion may have reached a consensus in the field of fluid mechanics. However, this conclusion is derived from an incomplete evaluation of the DR techniques. In this paper, we propose a more comprehensive evaluation system for DR methods and compare and evaluate the performance differences of three DR methods: principal component analysis (PCA), isometric mapping (isomap), and independent component analysis (ICA), when applied to cavitation flow fields. The numerical results of the cavitation flow are obtained by solving the compressible homogeneous mixture model. First, three different error metrics are used to comprehensively evaluate reconstruction errors. Isomap significantly improves the preservation of nonlinear information and retains the most information with the fewest modes. Second, Pearson correlation can be used to measure the overall structural characteristics of the data, while dynamic time warping cannot. PCA performs the best in preserving the overall data characteristics. In addition, based on the uniform sampling-based K-means clustering proposed in this paper, it becomes possible to evaluate the local structural characteristics of the data using clustering similarity. PCA still demonstrates better capability in preserving local data structures. Finally, flow patterns are used to evaluate the recognition performance of flow features. PCA focuses more on identifying the major information in the flow field, while isomap emphasizes identifying more nonlinear information. ICA can mathematically obtain more meaningful independent patterns. In conclusion, each DR algorithm has its own strengths and limitations. Improving evaluation methods to help select the most suitable DR algorithm is more meaningful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xwz626完成签到,获得积分10
1秒前
atropine完成签到 ,获得积分10
1秒前
大家好完成签到 ,获得积分10
2秒前
华仔应助serena0_0采纳,获得10
2秒前
Big_Show完成签到,获得积分10
8秒前
yinlao完成签到,获得积分10
25秒前
桐桐应助科研通管家采纳,获得50
25秒前
30秒前
王某人完成签到 ,获得积分10
30秒前
景明发布了新的文献求助10
34秒前
夏瑞完成签到 ,获得积分10
38秒前
dxc完成签到 ,获得积分10
42秒前
42秒前
鱼虾一整碗完成签到,获得积分10
45秒前
景明完成签到,获得积分10
51秒前
1分钟前
1分钟前
景辣条应助英勇羿采纳,获得10
1分钟前
活ni的pig完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
qq完成签到 ,获得积分10
1分钟前
Ghiocel完成签到,获得积分10
1分钟前
1分钟前
dental发布了新的文献求助10
1分钟前
Mayer1234088发布了新的文献求助10
1分钟前
1分钟前
鲤鱼梦柳完成签到 ,获得积分10
1分钟前
serena0_0发布了新的文献求助10
1分钟前
bkagyin应助Mayer1234088采纳,获得10
1分钟前
1分钟前
serena0_0完成签到,获得积分10
1分钟前
SciGPT应助伴着星光归来采纳,获得10
1分钟前
1分钟前
1分钟前
dental发布了新的文献求助10
2分钟前
2分钟前
monster完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助dental采纳,获得10
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798001
关于积分的说明 7826426
捐赠科研通 2454508
什么是DOI,文献DOI怎么找? 1306308
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522