Comparison and evaluation of dimensionality reduction techniques for the numerical simulations of unsteady cavitation

等距映射 主成分分析 降维 聚类分析 模式识别(心理学) 非线性系统 层次聚类 人工智能 非线性降维 计算机科学 维数之咒 数据挖掘 物理 量子力学
作者
Guiyong Zhang,Zihao Wang,Huakun Huang,Hang Li,Tiezhi Sun
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:16
标识
DOI:10.1063/5.0161471
摘要

In the field of fluid mechanics, dimensionality reduction (DR) is widely used for feature extraction and information simplification of high-dimensional spatiotemporal data. It is well known that nonlinear DR techniques outperform linear methods, and this conclusion may have reached a consensus in the field of fluid mechanics. However, this conclusion is derived from an incomplete evaluation of the DR techniques. In this paper, we propose a more comprehensive evaluation system for DR methods and compare and evaluate the performance differences of three DR methods: principal component analysis (PCA), isometric mapping (isomap), and independent component analysis (ICA), when applied to cavitation flow fields. The numerical results of the cavitation flow are obtained by solving the compressible homogeneous mixture model. First, three different error metrics are used to comprehensively evaluate reconstruction errors. Isomap significantly improves the preservation of nonlinear information and retains the most information with the fewest modes. Second, Pearson correlation can be used to measure the overall structural characteristics of the data, while dynamic time warping cannot. PCA performs the best in preserving the overall data characteristics. In addition, based on the uniform sampling-based K-means clustering proposed in this paper, it becomes possible to evaluate the local structural characteristics of the data using clustering similarity. PCA still demonstrates better capability in preserving local data structures. Finally, flow patterns are used to evaluate the recognition performance of flow features. PCA focuses more on identifying the major information in the flow field, while isomap emphasizes identifying more nonlinear information. ICA can mathematically obtain more meaningful independent patterns. In conclusion, each DR algorithm has its own strengths and limitations. Improving evaluation methods to help select the most suitable DR algorithm is more meaningful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空豁应助min2min采纳,获得10
2秒前
songcy7发布了新的文献求助10
5秒前
5秒前
脑洞疼应助白昼采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
zmj完成签到,获得积分10
9秒前
10秒前
搞怪斑马发布了新的文献求助10
10秒前
zhangmin发布了新的文献求助10
10秒前
万老头发布了新的文献求助10
11秒前
自觉小凡发布了新的文献求助20
11秒前
12秒前
kk完成签到,获得积分10
12秒前
ranjeah完成签到 ,获得积分10
12秒前
13秒前
得之我幸完成签到,获得积分10
14秒前
15秒前
激情的自行车完成签到,获得积分10
16秒前
16秒前
白蓝红完成签到 ,获得积分10
16秒前
17秒前
17秒前
17秒前
JamesPei应助科研小白采纳,获得10
18秒前
深情安青应助runtang采纳,获得30
18秒前
songcy7完成签到,获得积分10
18秒前
烟花应助六芒星采纳,获得10
19秒前
andy_lee发布了新的文献求助10
19秒前
20秒前
司徒水绿完成签到 ,获得积分10
20秒前
嘻嘻嘻发布了新的文献求助10
20秒前
削皮柚子发布了新的文献求助10
21秒前
俭朴蜜蜂发布了新的文献求助200
22秒前
依夏祭完成签到,获得积分10
23秒前
cc完成签到 ,获得积分10
23秒前
23秒前
天天快乐应助粤十一采纳,获得10
24秒前
YiJin_Wang发布了新的文献求助10
25秒前
乐情发布了新的文献求助20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206