Automatic Machine Learning Combined with High-Throughput Computational Screening of Hydrophobic Metal–Organic Frameworks for Capture of Methanol and Ethanol from the Air

甲醇 吸附 金属有机骨架 支持向量机 乙醇 化学 随机森林 材料科学 机器学习 计算机科学 有机化学
作者
Lulu Zhang,Qiuhong Huang,Lifeng Li,Yaling Yan,Xueying Yuan,Hong Liang,Shuhua Li,Bangfen Wang,Zhiwei Qiao
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (1): 115-127 被引量:6
标识
DOI:10.1021/acsestengg.2c00424
摘要

The capture of low concentration alcohol VOCs (methanol and ethanol) from the air has also attracted more and more attention. In this work, high-throughput computational screening (HTCS) and machine learning (ML) methods based on molecular simulations were used to investigate the adsorption properties of methanol and ethanol in 31 399 hydrophobic metal–organic frameworks (MOFs). First, the structure–performance relationship of MOFs was successfully established through univariate analysis, and the key descriptors identified were LCD and Q0st. Five ML methods, Decision Tree (DT), Random Forest (RF), Back Propagation Neural Network (BPNN), Support Vector Machines (SVM), and Tree-based Pipeline Optimization Tool (TPOT), were used to predict the adsorption performance of MOFs. The automatic machine learning (Auto-ML) algorithm TPOT has the best prediction effect on the TSN of methanol and ethanol, with R2 values of 0.852 and 0.945, respectively. The accuracy of the ML model was further improved using the random search method. Analysis of the algorithms has revealed that GBR and RFR have the highest prediction accuracy and frequency, respectively, for the MOF–methanol and MOF–ethanol systems. Ten MOF materials with excellent adsorption properties (0.002 mol/kg ≥ NCH3OH ≥ 0.001 mol/kg, 0.068 mol/kg ≥ NC2H5OH ≥ 0.016 mol/kg; 420.67 ≥ SCH3OH ≥ 214.29, 3.2 × 106 ≥ SC2H5OH ≥ 8.5 × 103) were selected successfully. After analysis of their adsorption sites, it was found that the primary adsorption sites for methanol and ethanol are located near the amino and halogen groups, and the different metal centers showed great influence on the adsorption capacity of MOFs for two kinds of alcohol molecules through the analysis of their structural commonness. This work can serve as a roadmap for experimental synthesis, innovative design of MOFs, and the development of new ML algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的霸天哥应助69qq采纳,获得30
刚刚
飞翔的霸天哥应助69qq采纳,获得30
刚刚
飞翔的霸天哥应助69qq采纳,获得30
刚刚
CipherSage应助69qq采纳,获得10
1秒前
哈哈发布了新的文献求助10
1秒前
净心完成签到 ,获得积分10
2秒前
louyu完成签到 ,获得积分0
2秒前
Jimmy完成签到,获得积分10
4秒前
baobaonaixi完成签到,获得积分10
5秒前
8秒前
LoganLee发布了新的文献求助10
8秒前
9秒前
寻道图强应助ernest采纳,获得30
10秒前
勾勾完成签到,获得积分20
10秒前
雾让空山完成签到,获得积分20
10秒前
Ciel完成签到 ,获得积分10
11秒前
11秒前
蚊香液发布了新的文献求助30
13秒前
13秒前
ccc完成签到,获得积分10
13秒前
丘比特应助asder采纳,获得20
15秒前
ho应助jiang采纳,获得10
15秒前
boge5633完成签到,获得积分10
16秒前
16秒前
jisean完成签到,获得积分10
17秒前
彩色的万仇完成签到 ,获得积分10
17秒前
wang发布了新的文献求助10
17秒前
打打应助sss采纳,获得10
19秒前
20秒前
斯文败类应助guzhfia采纳,获得10
20秒前
完美世界应助小穆采纳,获得10
20秒前
20秒前
小棉背心完成签到 ,获得积分10
20秒前
丘比特应助yzy采纳,获得10
21秒前
21秒前
我不看月亮完成签到,获得积分10
21秒前
22秒前
阿宋完成签到 ,获得积分10
23秒前
Flynn完成签到,获得积分10
26秒前
从容的柠檬完成签到 ,获得积分10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350006
求助须知:如何正确求助?哪些是违规求助? 4483602
关于积分的说明 13956475
捐赠科研通 4382822
什么是DOI,文献DOI怎么找? 2408004
邀请新用户注册赠送积分活动 1400684
关于科研通互助平台的介绍 1373963