Automatic Machine Learning Combined with High-Throughput Computational Screening of Hydrophobic Metal–Organic Frameworks for Capture of Methanol and Ethanol from the Air

甲醇 吸附 金属有机骨架 支持向量机 乙醇 化学 随机森林 材料科学 机器学习 计算机科学 有机化学
作者
Lulu Zhang,Qiuhong Huang,Lifeng Li,Yaling Yan,Xueying Yuan,Hong Liang,Shuhua Li,Bangfen Wang,Zhiwei Qiao
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (1): 115-127 被引量:2
标识
DOI:10.1021/acsestengg.2c00424
摘要

The capture of low concentration alcohol VOCs (methanol and ethanol) from the air has also attracted more and more attention. In this work, high-throughput computational screening (HTCS) and machine learning (ML) methods based on molecular simulations were used to investigate the adsorption properties of methanol and ethanol in 31 399 hydrophobic metal–organic frameworks (MOFs). First, the structure–performance relationship of MOFs was successfully established through univariate analysis, and the key descriptors identified were LCD and Q0st. Five ML methods, Decision Tree (DT), Random Forest (RF), Back Propagation Neural Network (BPNN), Support Vector Machines (SVM), and Tree-based Pipeline Optimization Tool (TPOT), were used to predict the adsorption performance of MOFs. The automatic machine learning (Auto-ML) algorithm TPOT has the best prediction effect on the TSN of methanol and ethanol, with R2 values of 0.852 and 0.945, respectively. The accuracy of the ML model was further improved using the random search method. Analysis of the algorithms has revealed that GBR and RFR have the highest prediction accuracy and frequency, respectively, for the MOF–methanol and MOF–ethanol systems. Ten MOF materials with excellent adsorption properties (0.002 mol/kg ≥ NCH3OH ≥ 0.001 mol/kg, 0.068 mol/kg ≥ NC2H5OH ≥ 0.016 mol/kg; 420.67 ≥ SCH3OH ≥ 214.29, 3.2 × 106 ≥ SC2H5OH ≥ 8.5 × 103) were selected successfully. After analysis of their adsorption sites, it was found that the primary adsorption sites for methanol and ethanol are located near the amino and halogen groups, and the different metal centers showed great influence on the adsorption capacity of MOFs for two kinds of alcohol molecules through the analysis of their structural commonness. This work can serve as a roadmap for experimental synthesis, innovative design of MOFs, and the development of new ML algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kumbo发布了新的文献求助10
1秒前
2秒前
郝好完成签到 ,获得积分10
3秒前
beta完成签到 ,获得积分10
3秒前
跳跃仙人掌应助江边鸟采纳,获得40
3秒前
4秒前
小陈发布了新的文献求助30
4秒前
5秒前
Cai发布了新的文献求助10
6秒前
刘jinkai发布了新的文献求助10
6秒前
6秒前
doctorwang完成签到,获得积分10
6秒前
深情安青应助缥缈小熊猫采纳,获得10
6秒前
7秒前
星野发布了新的文献求助10
7秒前
妖孽宇完成签到,获得积分10
7秒前
震动的又槐完成签到,获得积分10
8秒前
依萱完成签到,获得积分10
9秒前
居居应助HAAAPY采纳,获得30
9秒前
beta发布了新的文献求助50
10秒前
Jackie完成签到,获得积分10
10秒前
小陈完成签到,获得积分20
11秒前
12秒前
12秒前
14秒前
14秒前
美满听白完成签到,获得积分10
14秒前
传奇3应助无处不在采纳,获得10
15秒前
Singularity应助kumbo采纳,获得10
15秒前
Orange应助伶俐的道消采纳,获得10
15秒前
汉堡包应助菠萝蜜采纳,获得10
16秒前
烧炭匠关注了科研通微信公众号
16秒前
16秒前
苗玉发布了新的文献求助10
17秒前
17秒前
bkagyin应助taeyeon采纳,获得30
17秒前
隐形曼青应助王晓宇采纳,获得10
18秒前
腼腆的乐安应助punch采纳,获得10
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821