Automatic Machine Learning Combined with High-Throughput Computational Screening of Hydrophobic Metal–Organic Frameworks for Capture of Methanol and Ethanol from the Air

甲醇 吸附 金属有机骨架 支持向量机 乙醇 化学 随机森林 材料科学 机器学习 计算机科学 有机化学
作者
Lulu Zhang,Qiuhong Huang,Lifeng Li,Yaling Yan,Xueying Yuan,Hong Liang,Shuhua Li,Bangfen Wang,Zhiwei Qiao
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (1): 115-127 被引量:6
标识
DOI:10.1021/acsestengg.2c00424
摘要

The capture of low concentration alcohol VOCs (methanol and ethanol) from the air has also attracted more and more attention. In this work, high-throughput computational screening (HTCS) and machine learning (ML) methods based on molecular simulations were used to investigate the adsorption properties of methanol and ethanol in 31 399 hydrophobic metal–organic frameworks (MOFs). First, the structure–performance relationship of MOFs was successfully established through univariate analysis, and the key descriptors identified were LCD and Q0st. Five ML methods, Decision Tree (DT), Random Forest (RF), Back Propagation Neural Network (BPNN), Support Vector Machines (SVM), and Tree-based Pipeline Optimization Tool (TPOT), were used to predict the adsorption performance of MOFs. The automatic machine learning (Auto-ML) algorithm TPOT has the best prediction effect on the TSN of methanol and ethanol, with R2 values of 0.852 and 0.945, respectively. The accuracy of the ML model was further improved using the random search method. Analysis of the algorithms has revealed that GBR and RFR have the highest prediction accuracy and frequency, respectively, for the MOF–methanol and MOF–ethanol systems. Ten MOF materials with excellent adsorption properties (0.002 mol/kg ≥ NCH3OH ≥ 0.001 mol/kg, 0.068 mol/kg ≥ NC2H5OH ≥ 0.016 mol/kg; 420.67 ≥ SCH3OH ≥ 214.29, 3.2 × 106 ≥ SC2H5OH ≥ 8.5 × 103) were selected successfully. After analysis of their adsorption sites, it was found that the primary adsorption sites for methanol and ethanol are located near the amino and halogen groups, and the different metal centers showed great influence on the adsorption capacity of MOFs for two kinds of alcohol molecules through the analysis of their structural commonness. This work can serve as a roadmap for experimental synthesis, innovative design of MOFs, and the development of new ML algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限的雨梅完成签到 ,获得积分10
刚刚
江江完成签到,获得积分10
1秒前
EVER完成签到 ,获得积分10
1秒前
wry完成签到,获得积分10
1秒前
柳沧海完成签到,获得积分10
2秒前
2秒前
2秒前
kaka1981sdu完成签到,获得积分10
3秒前
3秒前
木子完成签到 ,获得积分10
3秒前
Yep0672发布了新的文献求助10
3秒前
Jenny完成签到,获得积分10
3秒前
叶明昭完成签到,获得积分10
4秒前
李君然完成签到 ,获得积分10
4秒前
CCC完成签到 ,获得积分10
4秒前
LL完成签到,获得积分10
4秒前
褚明雪完成签到,获得积分10
4秒前
yuyiyi完成签到,获得积分10
6秒前
鳗鱼友灵发布了新的文献求助30
6秒前
木头人完成签到,获得积分10
6秒前
neil完成签到,获得积分10
7秒前
化工波比完成签到,获得积分10
7秒前
微笑的天抒完成签到,获得积分10
7秒前
7秒前
香蕉觅云应助gxudmy采纳,获得10
8秒前
桢桢树发布了新的文献求助10
8秒前
醉熏的天与应助liao采纳,获得10
8秒前
时光友岸完成签到,获得积分10
8秒前
棋士应助小林采纳,获得10
9秒前
学谦完成签到,获得积分10
9秒前
我现在弱得可怕完成签到,获得积分10
9秒前
chendahuanhuan完成签到,获得积分10
10秒前
ding应助Hh采纳,获得10
10秒前
吴建文完成签到 ,获得积分10
10秒前
源源源完成签到 ,获得积分10
10秒前
cfsyyfujia完成签到 ,获得积分10
10秒前
夏姬宁静完成签到,获得积分10
11秒前
胡凉水完成签到,获得积分10
11秒前
2425完成签到,获得积分20
11秒前
Arthur发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950076
求助须知:如何正确求助?哪些是违规求助? 3495418
关于积分的说明 11077056
捐赠科研通 3225984
什么是DOI,文献DOI怎么找? 1783357
邀请新用户注册赠送积分活动 867663
科研通“疑难数据库(出版商)”最低求助积分说明 800855