18F-FDG PET/CT-based habitat radiomics combining stacking ensemble learning for predicting prognosis in hepatocellular carcinoma: a multi-center study

人工智能 聚类分析 比例危险模型 肝细胞癌 机器学习 集成学习 集合预报 特征选择 医学 无线电技术 计算机科学 模式识别(心理学) 内科学
作者
Chunxiao Sui,Qian Su,Kun Chen,Ruiqin Tan,Ziyang Wang,Zifan Liu,Wengui Xu,Xiaofeng Li
出处
期刊:BMC Cancer [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-13206-5
摘要

This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in 18F-FDG PET/CT images. A total of 137 HCC patients from two institutions were retrospectively included. First, intratumoral habitats were achieved by a two-step unsupervised clustering process based on k-means clustering. Second, a total of 4032 radiomic features were extracted based on each habitat, including 2016 PET-based and 2016 CT-based radiomic features. Then, after feature selection, the stacking ensemble learning approach which combined six machine learning classifiers as the first-level learners with Cox proportional hazards regression as the second-level learner, was employed to build multiple radiomic models. Finally, the optimal model was selected based on the calculation of the C-index, and a combined model integrating with a clinical model was also constructed to identify the potentially complementary effect. Three spatially distinct habitats were identified in the two cohorts. Among a total of 30 stacking ensemble learning models established based on different combinations of 5 types of segmented volumes of interest (VOIs) with 6 types of classifiers, the MLP-Cox-habitat-2 model was selected as the optimal radiomic model with a C-index of 0.702 in the external validation cohort. Furthermore, the combined model integrating the optimal radiomic model with the clinical model achieved an improved C-index of 0.747. Consistently, the combined model outperformed the other models for OS prediction, with a time-dependent AUC of 0.835, 0.828, and 0.800 in the 1-year, 2-year, and 3-year OS, respectively. 18F-FDG PET/CT-based habitat radiomics outperformed traditional radiomics in OS prediction for HCC, with a further improved predictive power by integrating with the clinical model. The optimal combined habitat model was potentially promising in guiding individualized treatment for HCC. This study was a retrospective study, so it was free from registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圈圈完成签到,获得积分10
刚刚
芯止谭轩完成签到,获得积分10
1秒前
黑色幽默完成签到 ,获得积分10
1秒前
丘比特应助LL采纳,获得10
1秒前
gecumk发布了新的文献求助10
4秒前
4秒前
甜美梦槐发布了新的文献求助10
4秒前
5秒前
星辰大海应助Tracer采纳,获得10
5秒前
逍遥完成签到,获得积分10
6秒前
Tristan完成签到 ,获得积分10
6秒前
丽平发布了新的文献求助10
7秒前
7秒前
8秒前
yeah18完成签到 ,获得积分10
9秒前
ciallo完成签到,获得积分10
10秒前
连渡完成签到,获得积分10
10秒前
10秒前
及时雨完成签到 ,获得积分10
11秒前
枪王阿绣完成签到 ,获得积分10
11秒前
yuyuyu完成签到,获得积分10
11秒前
gecumk完成签到,获得积分10
12秒前
悦耳亦云完成签到 ,获得积分10
13秒前
13秒前
13秒前
犹豫大侠发布了新的文献求助10
13秒前
tcmlida完成签到,获得积分10
13秒前
OMIT完成签到,获得积分10
13秒前
14秒前
14秒前
群青完成签到 ,获得积分10
17秒前
17秒前
易琚完成签到,获得积分10
17秒前
17秒前
西西发布了新的文献求助10
17秒前
八九完成签到 ,获得积分10
18秒前
朝暮完成签到 ,获得积分10
19秒前
Hello应助lsz采纳,获得10
19秒前
丘比特应助将妄采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911110
求助须知:如何正确求助?哪些是违规求助? 4186617
关于积分的说明 13000608
捐赠科研通 3954386
什么是DOI,文献DOI怎么找? 2168285
邀请新用户注册赠送积分活动 1186699
关于科研通互助平台的介绍 1094037