亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

18F-FDG PET/CT-based habitat radiomics combining stacking ensemble learning for predicting prognosis in hepatocellular carcinoma: a multi-center study

人工智能 聚类分析 比例危险模型 肝细胞癌 机器学习 集成学习 集合预报 特征选择 医学 无线电技术 计算机科学 模式识别(心理学) 内科学
作者
Chunxiao Sui,Qian Su,Kun Chen,Ruiqin Tan,Ziyang Wang,Zifan Liu,Wengui Xu,Xiaofeng Li
出处
期刊:BMC Cancer [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-13206-5
摘要

This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in 18F-FDG PET/CT images. A total of 137 HCC patients from two institutions were retrospectively included. First, intratumoral habitats were achieved by a two-step unsupervised clustering process based on k-means clustering. Second, a total of 4032 radiomic features were extracted based on each habitat, including 2016 PET-based and 2016 CT-based radiomic features. Then, after feature selection, the stacking ensemble learning approach which combined six machine learning classifiers as the first-level learners with Cox proportional hazards regression as the second-level learner, was employed to build multiple radiomic models. Finally, the optimal model was selected based on the calculation of the C-index, and a combined model integrating with a clinical model was also constructed to identify the potentially complementary effect. Three spatially distinct habitats were identified in the two cohorts. Among a total of 30 stacking ensemble learning models established based on different combinations of 5 types of segmented volumes of interest (VOIs) with 6 types of classifiers, the MLP-Cox-habitat-2 model was selected as the optimal radiomic model with a C-index of 0.702 in the external validation cohort. Furthermore, the combined model integrating the optimal radiomic model with the clinical model achieved an improved C-index of 0.747. Consistently, the combined model outperformed the other models for OS prediction, with a time-dependent AUC of 0.835, 0.828, and 0.800 in the 1-year, 2-year, and 3-year OS, respectively. 18F-FDG PET/CT-based habitat radiomics outperformed traditional radiomics in OS prediction for HCC, with a further improved predictive power by integrating with the clinical model. The optimal combined habitat model was potentially promising in guiding individualized treatment for HCC. This study was a retrospective study, so it was free from registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haprier完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
16秒前
lxh发布了新的文献求助10
36秒前
李健应助lxh采纳,获得10
47秒前
47秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
杨柳发布了新的文献求助10
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
桦奕兮完成签到 ,获得积分10
1分钟前
像个间谍完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
思源应助杨柳采纳,获得10
2分钟前
Alger发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ZYN完成签到 ,获得积分10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
laity完成签到 ,获得积分10
3分钟前
Eileen发布了新的文献求助20
3分钟前
无花果应助猕猴桃采纳,获得30
3分钟前
善学以致用应助Eileen采纳,获得10
4分钟前
Alger发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
比比谁的速度快给Zephyr的求助进行了留言
5分钟前
5分钟前
Eileen发布了新的文献求助10
5分钟前
5分钟前
杨柳发布了新的文献求助10
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
Akim应助Eileen采纳,获得10
6分钟前
Zephyr发布了新的文献求助200
6分钟前
杨柳完成签到,获得积分10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
酷波er应助科研通管家采纳,获得10
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008132
求助须知:如何正确求助?哪些是违规求助? 3547942
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188