18F-FDG PET/CT-based habitat radiomics combining stacking ensemble learning for predicting prognosis in hepatocellular carcinoma: a multi-center study

人工智能 聚类分析 比例危险模型 肝细胞癌 机器学习 集成学习 集合预报 特征选择 医学 无线电技术 计算机科学 模式识别(心理学) 内科学
作者
Chunxiao Sui,Qian Su,Kun Chen,Ruiqin Tan,Ziyang Wang,Zifan Liu,Wengui Xu,Xiaofeng Li
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-13206-5
摘要

This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in 18F-FDG PET/CT images. A total of 137 HCC patients from two institutions were retrospectively included. First, intratumoral habitats were achieved by a two-step unsupervised clustering process based on k-means clustering. Second, a total of 4032 radiomic features were extracted based on each habitat, including 2016 PET-based and 2016 CT-based radiomic features. Then, after feature selection, the stacking ensemble learning approach which combined six machine learning classifiers as the first-level learners with Cox proportional hazards regression as the second-level learner, was employed to build multiple radiomic models. Finally, the optimal model was selected based on the calculation of the C-index, and a combined model integrating with a clinical model was also constructed to identify the potentially complementary effect. Three spatially distinct habitats were identified in the two cohorts. Among a total of 30 stacking ensemble learning models established based on different combinations of 5 types of segmented volumes of interest (VOIs) with 6 types of classifiers, the MLP-Cox-habitat-2 model was selected as the optimal radiomic model with a C-index of 0.702 in the external validation cohort. Furthermore, the combined model integrating the optimal radiomic model with the clinical model achieved an improved C-index of 0.747. Consistently, the combined model outperformed the other models for OS prediction, with a time-dependent AUC of 0.835, 0.828, and 0.800 in the 1-year, 2-year, and 3-year OS, respectively. 18F-FDG PET/CT-based habitat radiomics outperformed traditional radiomics in OS prediction for HCC, with a further improved predictive power by integrating with the clinical model. The optimal combined habitat model was potentially promising in guiding individualized treatment for HCC. This study was a retrospective study, so it was free from registration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
beleve完成签到,获得积分10
3秒前
NULI完成签到 ,获得积分10
3秒前
nine2652完成签到 ,获得积分10
5秒前
beleve发布了新的文献求助10
6秒前
西红柿不吃皮完成签到 ,获得积分10
8秒前
jeffrey完成签到,获得积分10
8秒前
llll完成签到,获得积分10
10秒前
草莓熊1215完成签到 ,获得积分10
12秒前
鹰隼游完成签到 ,获得积分10
13秒前
mengmenglv完成签到 ,获得积分0
15秒前
方赫然给国家栋梁的求助进行了留言
19秒前
_Charmo发布了新的文献求助10
20秒前
六初完成签到 ,获得积分10
21秒前
研通通完成签到,获得积分0
21秒前
个性的大白菜真实的钥匙完成签到 ,获得积分10
23秒前
cfd完成签到,获得积分10
23秒前
鲸鱼打滚完成签到 ,获得积分10
26秒前
看文献完成签到,获得积分10
28秒前
忐忑的草丛完成签到,获得积分10
29秒前
章鱼小丸子完成签到 ,获得积分20
30秒前
江边鸟完成签到 ,获得积分10
31秒前
张润泽完成签到 ,获得积分10
32秒前
子健完成签到,获得积分10
34秒前
allrubbish完成签到,获得积分10
35秒前
FashionBoy应助Cx330采纳,获得10
35秒前
cherry bomb完成签到,获得积分10
36秒前
minuxSCI完成签到,获得积分10
38秒前
平安完成签到,获得积分10
38秒前
40秒前
42秒前
44秒前
44秒前
NeoWu发布了新的文献求助10
45秒前
46秒前
Cx330发布了新的文献求助10
49秒前
花开四海完成签到 ,获得积分10
51秒前
David发布了新的文献求助10
51秒前
橙子是不是完成签到 ,获得积分10
52秒前
jiayoujijin完成签到 ,获得积分10
53秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234742
求助须知:如何正确求助?哪些是违规求助? 2880941
关于积分的说明 8217499
捐赠科研通 2548647
什么是DOI,文献DOI怎么找? 1377879
科研通“疑难数据库(出版商)”最低求助积分说明 648067
邀请新用户注册赠送积分活动 623430