已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

18F-FDG PET/CT-based habitat radiomics combining stacking ensemble learning for predicting prognosis in hepatocellular carcinoma: a multi-center study

人工智能 聚类分析 比例危险模型 肝细胞癌 机器学习 集成学习 集合预报 特征选择 医学 无线电技术 计算机科学 模式识别(心理学) 内科学
作者
Chunxiao Sui,Qian Su,Kun Chen,Ruiqin Tan,Ziyang Wang,Zifan Liu,Wengui Xu,Xiaofeng Li
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-13206-5
摘要

This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in 18F-FDG PET/CT images. A total of 137 HCC patients from two institutions were retrospectively included. First, intratumoral habitats were achieved by a two-step unsupervised clustering process based on k-means clustering. Second, a total of 4032 radiomic features were extracted based on each habitat, including 2016 PET-based and 2016 CT-based radiomic features. Then, after feature selection, the stacking ensemble learning approach which combined six machine learning classifiers as the first-level learners with Cox proportional hazards regression as the second-level learner, was employed to build multiple radiomic models. Finally, the optimal model was selected based on the calculation of the C-index, and a combined model integrating with a clinical model was also constructed to identify the potentially complementary effect. Three spatially distinct habitats were identified in the two cohorts. Among a total of 30 stacking ensemble learning models established based on different combinations of 5 types of segmented volumes of interest (VOIs) with 6 types of classifiers, the MLP-Cox-habitat-2 model was selected as the optimal radiomic model with a C-index of 0.702 in the external validation cohort. Furthermore, the combined model integrating the optimal radiomic model with the clinical model achieved an improved C-index of 0.747. Consistently, the combined model outperformed the other models for OS prediction, with a time-dependent AUC of 0.835, 0.828, and 0.800 in the 1-year, 2-year, and 3-year OS, respectively. 18F-FDG PET/CT-based habitat radiomics outperformed traditional radiomics in OS prediction for HCC, with a further improved predictive power by integrating with the clinical model. The optimal combined habitat model was potentially promising in guiding individualized treatment for HCC. This study was a retrospective study, so it was free from registration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu完成签到 ,获得积分10
刚刚
晴空万里完成签到 ,获得积分10
刚刚
xiaofeiyan发布了新的文献求助10
1秒前
hxjnx发布了新的文献求助10
2秒前
4秒前
麻瓜X完成签到,获得积分10
6秒前
6秒前
晓晓鹤发布了新的文献求助10
8秒前
8秒前
Jasper应助Laputa采纳,获得30
8秒前
Liz发布了新的文献求助10
9秒前
NexusExplorer应助笨鸟先飞采纳,获得10
9秒前
哈哈哈发布了新的文献求助10
10秒前
CipherSage应助裂头蚴采纳,获得10
10秒前
小秃子完成签到,获得积分10
12秒前
13秒前
14秒前
16秒前
wangai1011应助Tracy采纳,获得10
19秒前
雨相所至发布了新的文献求助10
19秒前
上好佳完成签到,获得积分10
21秒前
NattyPoe发布了新的文献求助10
21秒前
23秒前
xiaofeiyan发布了新的文献求助10
29秒前
JiegeSCI完成签到,获得积分10
29秒前
35秒前
夕夕成玦完成签到 ,获得积分10
35秒前
orixero应助啵啵小柚子采纳,获得10
36秒前
尹宝发布了新的文献求助10
39秒前
黄昏完成签到,获得积分10
39秒前
40秒前
40秒前
40秒前
英姑应助TTTYL采纳,获得30
41秒前
nanwan完成签到,获得积分10
41秒前
42秒前
43秒前
CodeCraft应助PanLi采纳,获得10
43秒前
43秒前
messi0731发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627458
求助须知:如何正确求助?哪些是违规求助? 4713928
关于积分的说明 14962390
捐赠科研通 4784838
什么是DOI,文献DOI怎么找? 2554884
邀请新用户注册赠送积分活动 1516380
关于科研通互助平台的介绍 1476702