亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

18F-FDG PET/CT-based habitat radiomics combining stacking ensemble learning for predicting prognosis in hepatocellular carcinoma: a multi-center study

人工智能 聚类分析 比例危险模型 肝细胞癌 机器学习 集成学习 集合预报 特征选择 医学 无线电技术 计算机科学 模式识别(心理学) 内科学
作者
Chunxiao Sui,Qian Su,Kun Chen,Ruiqin Tan,Ziyang Wang,Zifan Liu,Wengui Xu,Xiaofeng Li
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-13206-5
摘要

This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in 18F-FDG PET/CT images. A total of 137 HCC patients from two institutions were retrospectively included. First, intratumoral habitats were achieved by a two-step unsupervised clustering process based on k-means clustering. Second, a total of 4032 radiomic features were extracted based on each habitat, including 2016 PET-based and 2016 CT-based radiomic features. Then, after feature selection, the stacking ensemble learning approach which combined six machine learning classifiers as the first-level learners with Cox proportional hazards regression as the second-level learner, was employed to build multiple radiomic models. Finally, the optimal model was selected based on the calculation of the C-index, and a combined model integrating with a clinical model was also constructed to identify the potentially complementary effect. Three spatially distinct habitats were identified in the two cohorts. Among a total of 30 stacking ensemble learning models established based on different combinations of 5 types of segmented volumes of interest (VOIs) with 6 types of classifiers, the MLP-Cox-habitat-2 model was selected as the optimal radiomic model with a C-index of 0.702 in the external validation cohort. Furthermore, the combined model integrating the optimal radiomic model with the clinical model achieved an improved C-index of 0.747. Consistently, the combined model outperformed the other models for OS prediction, with a time-dependent AUC of 0.835, 0.828, and 0.800 in the 1-year, 2-year, and 3-year OS, respectively. 18F-FDG PET/CT-based habitat radiomics outperformed traditional radiomics in OS prediction for HCC, with a further improved predictive power by integrating with the clinical model. The optimal combined habitat model was potentially promising in guiding individualized treatment for HCC. This study was a retrospective study, so it was free from registration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古月完成签到 ,获得积分10
15秒前
ABCD完成签到 ,获得积分10
30秒前
32秒前
滋滋发布了新的文献求助10
36秒前
滋滋完成签到,获得积分20
45秒前
波里舞完成签到 ,获得积分10
53秒前
1分钟前
1分钟前
毛毛发布了新的文献求助10
1分钟前
1分钟前
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
矮小的白猫完成签到,获得积分10
2分钟前
2分钟前
2分钟前
小刘小刘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
2分钟前
彭进水完成签到 ,获得积分10
2分钟前
情怀应助小刘小刘采纳,获得80
3分钟前
3分钟前
3分钟前
Yuanyuan发布了新的文献求助10
3分钟前
3分钟前
烟花应助科研通管家采纳,获得10
3分钟前
JamesPei应助77采纳,获得10
3分钟前
阿K完成签到,获得积分10
3分钟前
sophy发布了新的文献求助20
3分钟前
3分钟前
默己完成签到 ,获得积分10
3分钟前
77发布了新的文献求助10
3分钟前
害羞的高跟鞋完成签到,获得积分20
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788771
求助须知:如何正确求助?哪些是违规求助? 5711930
关于积分的说明 15473908
捐赠科研通 4916776
什么是DOI,文献DOI怎么找? 2646575
邀请新用户注册赠送积分活动 1594240
关于科研通互助平台的介绍 1548666