DAU-Net: a novel U-Net with dual attention for retinal vessel segmentation

分割 计算机科学 编码器 眼底(子宫) 人工智能 注意力网络 块(置换群论) 特征(语言学) 模式识别(心理学) 网(多面体) 计算机视觉 眼科 医学 数学 几何学 语言学 哲学 操作系统
作者
Muwei Jian,Wenjing Xu,Chuan Nie,Shuo Li,Sungwook Yang,Xiaoguang Li
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:11 (2): 025009-025009
标识
DOI:10.1088/2057-1976/ada9f0
摘要

Abstract In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model. Additionally, we designed two efficient attention modules, namely Local-Global Attention (LGA) and Cross-Fusion Attention (CFA). Specifically, LGA conducts attention calculations on the features extracted by the encoder to accentuate vessel-related characteristics while suppressing irrelevant background information; CFA addresses potential information loss during feature extraction by globally modeling pixel interactions between encoder and decoder features. Comprehensive experiments in terms of public datasets DRIVE, CHASE_DB1, and STARE demonstrate that DAU-Net obtains excellent segmentation results on all three datasets. The results show an AUC of 0.9818, ACC of 0.8299, and F1 score of 0.9585 on DRIVE; 0.9894, 0.8499, and 0.9700 on CHASE_DB1; and 0.9908, 0.8620, and 0.9712 on STARE, respectively. These results strongly demonstrate the effectiveness of DAU-Net in retinal vessel segmentation, highlighting its potential for practical clinical use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
寄居安完成签到,获得积分10
1秒前
2秒前
嘟嘟嘟嘟完成签到 ,获得积分10
4秒前
ty发布了新的文献求助10
4秒前
4秒前
forest完成签到,获得积分10
4秒前
5秒前
yukino发布了新的文献求助10
5秒前
964230130发布了新的文献求助20
7秒前
7秒前
7秒前
chrissylaiiii完成签到,获得积分10
9秒前
科研通AI2S应助鲤鱼白玉采纳,获得10
10秒前
10秒前
不安慕蕊发布了新的文献求助10
11秒前
12秒前
满意的柏柳完成签到,获得积分10
13秒前
乐乐应助854fycchjh采纳,获得10
13秒前
orixero应助chrissylaiiii采纳,获得10
14秒前
14秒前
15秒前
舒心的怡完成签到,获得积分10
15秒前
lxw完成签到,获得积分10
16秒前
顾矜应助严笑容采纳,获得30
16秒前
psm完成签到 ,获得积分10
17秒前
fengbeing完成签到,获得积分10
17秒前
wxwang完成签到,获得积分10
17秒前
舒心的怡发布了新的文献求助10
18秒前
18秒前
伊酒应助mmyhn采纳,获得10
19秒前
斯文若魔完成签到,获得积分10
20秒前
邺昀完成签到,获得积分10
21秒前
干净冰露完成签到,获得积分10
22秒前
东如海发布了新的文献求助10
22秒前
Zl0911完成签到,获得积分10
22秒前
无奈的馒头完成签到,获得积分10
23秒前
科研通AI5应助Xu采纳,获得10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794