Deep‐Learning Generated Synthetic Material Decomposition Images Based on Single‐Energy CT to Differentiate Intracranial Hemorrhage and Contrast Staining Within 24 Hours After Endovascular Thrombectomy

对比度(视觉) 医学 接收机工作特性 生成对抗网络 核医学 放射科 人工智能 计算机科学 深度学习 内科学
作者
Tianyu Wang,Caiwen Jiang,Weili Ding,Qing Chen,Dinggang Shen,Zhongxiang Ding
出处
期刊:CNS Neuroscience & Therapeutics [Wiley]
卷期号:31 (1)
标识
DOI:10.1111/cns.70235
摘要

ABSTRACT Aims To develop a transformer‐based generative adversarial network (trans‐GAN) that can generate synthetic material decomposition images from single‐energy CT (SECT) for real‐time detection of intracranial hemorrhage (ICH) after endovascular thrombectomy. Materials We retrospectively collected data from two hospitals, consisting of 237 dual‐energy CT (DECT) scans, including matched iodine overlay maps, virtual noncontrast, and simulated SECT images. These scans were randomly divided into a training set ( n = 190) and an internal validation set ( n = 47) in a 4:1 ratio based on the proportion of ICH. Additionally, 26 SECT scans were included as an external validation set. We compared our trans‐GAN with state‐of‐the‐art generation methods using several physical metrics of the generated images and evaluated the diagnostic efficacy of the generated images for differentiating ICH from contrast staining. Results In comparison with other generation methods, the images generated by trans‐GAN exhibited superior quantitative performance. Meanwhile, in terms of ICH detection, the use of generated images from both the internal and external validation sets resulted in a higher area under the receiver operating characteristic curve (0.88 vs. 0.68 and 0.69 vs. 0.54, respectively) and kappa values (0.83 vs. 0.56 and 0.51 vs. 0.31, respectively) compared with input SECT images. Conclusion Our proposed trans‐GAN provides a new approach based on SECT for real‐time differentiation of ICH and contrast staining in hospitals without DECT conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nano完成签到,获得积分10
1秒前
2秒前
WRWRWR发布了新的文献求助30
3秒前
sgfiii完成签到,获得积分10
7秒前
高贵的迎蕾完成签到 ,获得积分10
7秒前
不爱吃醋发布了新的文献求助10
7秒前
7秒前
脑洞疼应助英勇香氛采纳,获得10
9秒前
VDC应助Jim luo采纳,获得50
9秒前
朱由校发布了新的文献求助10
11秒前
kk发布了新的文献求助10
12秒前
Candice应助Na采纳,获得10
13秒前
13秒前
夏漆应助xiuxiuzhang采纳,获得20
14秒前
liuliu发布了新的文献求助10
14秒前
852应助cultromics采纳,获得20
15秒前
FartKing发布了新的文献求助10
16秒前
酷波er应助sgfiii采纳,获得10
16秒前
16秒前
20秒前
20秒前
kk完成签到,获得积分10
20秒前
22秒前
33发布了新的文献求助30
23秒前
饼饼发布了新的文献求助10
23秒前
24秒前
无花果应助毕蓝血采纳,获得10
25秒前
搜集达人应助山楂采纳,获得10
26秒前
27秒前
28秒前
医者完成签到,获得积分10
29秒前
Jasper应助lalalala采纳,获得10
30秒前
杨旸发布了新的文献求助10
31秒前
weinaonao发布了新的文献求助10
31秒前
Singularity应助薄荷喵采纳,获得10
32秒前
妮儿发布了新的文献求助10
34秒前
35秒前
xuxuxu发布了新的文献求助10
36秒前
科研猫头鹰完成签到,获得积分10
37秒前
38秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396781
求助须知:如何正确求助?哪些是违规求助? 3006328
关于积分的说明 8820519
捐赠科研通 2693370
什么是DOI,文献DOI怎么找? 1475319
科研通“疑难数据库(出版商)”最低求助积分说明 682394
邀请新用户注册赠送积分活动 675680