Integrated Bioinformatics and Machine Learning Analysis Identify ACADL as a Potent Biomarker of Reactive Mesothelial Cells

间皮瘤 间皮细胞 生物标志物 免疫组织化学 接收机工作特性 间皮 支持向量机 Lasso(编程语言) 计算机科学 特征选择 癌症研究 人工智能 生物 医学 机器学习 生物化学 病理 万维网
作者
Y. J. Yin,Qianwen Cui,Jiarong Zhao,Qiang Wu,Qiuyan Sun,Hongqiang Wang,Wulin Yang
出处
期刊:American Journal of Pathology [Elsevier]
卷期号:194 (7): 1294-1305
标识
DOI:10.1016/j.ajpath.2024.03.013
摘要

Mesothelial cells with reactive hyperplasia are difficult to distinguish from malignant mesothelioma cells on cell morphology. This study aimed to identify and validate potential biomarkers that distinguish mesothelial cells from mesothelioma cells through machine learning combined with immunohistochemistry (IHC) experiments. We integrated the gene expression matrix from three GEO datasets (GSE2549, GSE12345, GSE51024) to analyze the differently expressed gene (DEGs) between normal and mesothelioma tissues. Then three machine learning algorithms, least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE), and random forest (RF) were used to screen and obtain four shared candidate markers, including ACADL, EMP2, GPD1L, HMMR. The receiver operating characteristic curve (ROC) analysis showed that the area under the curve (AUC) for distinguishing normal from mesothelioma was 0.976, 0.943, 0.962, and 0.956, respectively. The expression and diagnostic performance of these candidate genes were validated in another two independent datasets (GSE42977 and GSE112154), indicating that the performances of ACADL, GPD1L, and HMMR were consistent between the training and validation datasets. Finally, the optimal candidate marker ACADL was verified by IHC assay. ACADL was strongly stained in mesothelial cells, especially for reactive hyperplasic mesothelial cells, but was negative in malignant mesothelioma cells. Therefore, ACADL has the potential to be used as a specific marker of reactive hyperplasic mesothelial cells in the differential diagnosis of mesothelioma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
boxi完成签到,获得积分10
3秒前
5秒前
superworm1完成签到,获得积分10
5秒前
cebr发布了新的文献求助10
5秒前
搜集达人应助高高问柳采纳,获得10
5秒前
yyl完成签到 ,获得积分10
8秒前
木森ab完成签到,获得积分10
8秒前
麻薯头头发布了新的文献求助10
12秒前
Wilddeer完成签到 ,获得积分10
12秒前
14秒前
共享精神应助6666采纳,获得10
15秒前
高高问柳完成签到,获得积分20
17秒前
aaaaa发布了新的文献求助10
18秒前
甜美宛儿完成签到,获得积分10
20秒前
木子李33发布了新的文献求助10
20秒前
NexusExplorer应助笑点低映冬采纳,获得10
20秒前
高高问柳发布了新的文献求助10
20秒前
Anthocyanidin完成签到,获得积分10
21秒前
Ann发布了新的文献求助10
23秒前
小马甲应助支颐采纳,获得30
24秒前
24秒前
蕾蕾完成签到 ,获得积分10
28秒前
6666发布了新的文献求助10
29秒前
Jalynn2044完成签到,获得积分10
30秒前
凡亚比完成签到,获得积分10
30秒前
震动的平蝶完成签到 ,获得积分20
31秒前
liii完成签到 ,获得积分10
33秒前
稳重的闭月完成签到,获得积分10
34秒前
cebr完成签到,获得积分20
35秒前
36秒前
6666完成签到,获得积分10
38秒前
李健应助jwq采纳,获得10
38秒前
你好啊发布了新的文献求助10
41秒前
42秒前
48秒前
HEROTREE完成签到 ,获得积分10
51秒前
ABC发布了新的文献求助20
53秒前
53秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043