Integrated Bioinformatics and Machine Learning Analysis Identify ACADL as a Potent Biomarker of Reactive Mesothelial Cells

间皮瘤 间皮细胞 生物标志物 免疫组织化学 接收机工作特性 间皮 支持向量机 Lasso(编程语言) 计算机科学 特征选择 癌症研究 人工智能 生物 医学 机器学习 生物化学 病理 万维网
作者
Y. J. Yin,Qianwen Cui,Jiarong Zhao,Qiang Wu,Qiuyan Sun,Hongqiang Wang,Wulin Yang
出处
期刊:American Journal of Pathology [Elsevier]
卷期号:194 (7): 1294-1305
标识
DOI:10.1016/j.ajpath.2024.03.013
摘要

Mesothelial cells with reactive hyperplasia are difficult to distinguish from malignant mesothelioma cells on cell morphology. This study aimed to identify and validate potential biomarkers that distinguish mesothelial cells from mesothelioma cells through machine learning combined with immunohistochemistry (IHC) experiments. We integrated the gene expression matrix from three GEO datasets (GSE2549, GSE12345, GSE51024) to analyze the differently expressed gene (DEGs) between normal and mesothelioma tissues. Then three machine learning algorithms, least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE), and random forest (RF) were used to screen and obtain four shared candidate markers, including ACADL, EMP2, GPD1L, HMMR. The receiver operating characteristic curve (ROC) analysis showed that the area under the curve (AUC) for distinguishing normal from mesothelioma was 0.976, 0.943, 0.962, and 0.956, respectively. The expression and diagnostic performance of these candidate genes were validated in another two independent datasets (GSE42977 and GSE112154), indicating that the performances of ACADL, GPD1L, and HMMR were consistent between the training and validation datasets. Finally, the optimal candidate marker ACADL was verified by IHC assay. ACADL was strongly stained in mesothelial cells, especially for reactive hyperplasic mesothelial cells, but was negative in malignant mesothelioma cells. Therefore, ACADL has the potential to be used as a specific marker of reactive hyperplasic mesothelial cells in the differential diagnosis of mesothelioma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shone发布了新的文献求助10
1秒前
烟花应助yug采纳,获得10
1秒前
科研cc发布了新的文献求助10
1秒前
你仔细听发布了新的文献求助10
1秒前
路之遥兮发布了新的文献求助10
2秒前
一平发布了新的文献求助10
2秒前
jerry完成签到,获得积分20
2秒前
搞怪便当完成签到,获得积分10
2秒前
2秒前
2秒前
布丁仔完成签到,获得积分10
3秒前
3秒前
3秒前
Hu111完成签到,获得积分10
3秒前
3秒前
关琦完成签到,获得积分10
3秒前
4秒前
ZTT完成签到,获得积分20
4秒前
苗条的一一完成签到,获得积分10
4秒前
lxh2424发布了新的文献求助10
4秒前
4秒前
4秒前
dsjlove发布了新的文献求助10
5秒前
忧郁的续发布了新的文献求助10
5秒前
5秒前
科研r完成签到,获得积分10
5秒前
牧楊人完成签到 ,获得积分10
5秒前
Lucas应助勾勾1991采纳,获得10
6秒前
研友_VZG7GZ应助勾勾1991采纳,获得20
6秒前
充电宝应助勾勾1991采纳,获得20
6秒前
6秒前
Lucas应助勾勾1991采纳,获得10
6秒前
汉堡包应助jerry采纳,获得10
6秒前
习习应助changmengying采纳,获得10
7秒前
7秒前
高贵花瓣完成签到,获得积分10
7秒前
161319141完成签到 ,获得积分10
7秒前
丰富的世界完成签到 ,获得积分10
7秒前
高兴英完成签到,获得积分10
7秒前
美好嘉熙完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672