Forecasting Solar Energetic Particle Events During Solar Cycles 23 and 24 Using Interpretable Machine Learning

物理 太阳高能粒子 太阳物理学 粒子(生态学) 太阳耀斑 天文 太阳风 天体物理学 气象学 日冕物质抛射 等离子体 核物理学 海洋学 地质学
作者
Spiridon Kasapis,Irina Kitiashvili,Paul Kosovich,А. Г. Косовичев,Viacheslav M. Sadykov,Patrick M. O’Keefe,Vincent Wang
出处
期刊:The Astrophysical Journal [American Astronomical Society]
卷期号:974 (1): 131-131
标识
DOI:10.3847/1538-4357/ad6f0e
摘要

Abstract The prediction of solar energetic particle (SEP) events garners increasing interest as space missions extend beyond Earth’s protective magnetosphere. These events, which are, in most cases, products of magnetic-reconnection-driven processes during solar flares or fast coronal-mass-ejection-driven shock waves, pose significant radiation hazards to aviation, space-based electronics, and particularly space exploration. In this work, we utilize the recently developed data set that combines the Solar Dynamics Observatory/Space-weather Helioseismic and Magnetic Imager Active Region Patches and the Solar and Heliospheric Observatory/Space-weather Michelson Doppler Imager Active Region Patches. We employ a suite of machine learning strategies, including support vector machines (SVMs) and regression models, to evaluate the predictive potential of this new data product for a forecast of post-solar flare SEP events. Our study indicates that despite the augmented volume of data, the prediction accuracy reaches 0.7 ± 0.1 (experimental setting), which aligns with but does not exceed these published benchmarks. A linear SVM model with training and testing configurations that mimic an operational setting (positive–negative imbalance) reveals a slight increase (+0.04 ± 0.05) in the accuracy of a 14 hr SEP forecast compared to previous studies. This outcome emphasizes the imperative for more sophisticated, physics-informed models to better understand the underlying processes leading to SEP events.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
图图发布了新的文献求助10
刚刚
完美世界应助ew.采纳,获得10
1秒前
烟花应助303xiaoli采纳,获得10
1秒前
1秒前
ponowang完成签到,获得积分10
1秒前
高兴可乐完成签到,获得积分10
1秒前
xiaoxx完成签到,获得积分20
2秒前
2秒前
小耿完成签到 ,获得积分10
2秒前
3秒前
深情安青应助超帅的冷菱采纳,获得30
3秒前
结实灭男完成签到 ,获得积分10
3秒前
万能图书馆应助于是采纳,获得10
4秒前
科研通AI6应助汤飞飞采纳,获得10
4秒前
4秒前
cxyyy完成签到,获得积分10
4秒前
砂糖发布了新的文献求助10
4秒前
5秒前
5秒前
浮浮世世发布了新的文献求助10
5秒前
期待发布了新的文献求助10
5秒前
5秒前
研友_LN7x6n发布了新的文献求助10
5秒前
6秒前
ymqin1982发布了新的文献求助10
6秒前
laserman发布了新的文献求助50
6秒前
李健的小迷弟应助yazhi采纳,获得10
6秒前
fei菲飞完成签到,获得积分10
6秒前
6秒前
6秒前
asdfzxcv应助栗子采纳,获得10
6秒前
魔真人完成签到,获得积分10
7秒前
欢呼涵梅发布了新的文献求助10
7秒前
7秒前
朴素的雪瑶完成签到,获得积分10
7秒前
7秒前
8秒前
小马甲应助nihao采纳,获得10
8秒前
chenjunlin完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647168
求助须知:如何正确求助?哪些是违规求助? 4773018
关于积分的说明 15038081
捐赠科研通 4805852
什么是DOI,文献DOI怎么找? 2570007
邀请新用户注册赠送积分活动 1526881
关于科研通互助平台的介绍 1485983