Remaining Useful Life Estimation of Rolling Bearing Based on SOA-SVM Algorithm

冗余(工程) 方位(导航) 支持向量机 时域 算法 计算机科学 模式识别(心理学) 特征(语言学) 特征向量 振动 残余物 人工智能 计算机视觉 操作系统 物理 哲学 量子力学 语言学
作者
Li Xiao,Songyang An,Yuanyuan Shi,Yizhe Huang
出处
期刊:Machines [MDPI AG]
卷期号:10 (9): 729-729
标识
DOI:10.3390/machines10090729
摘要

Rolling bearings are an important part of rotating machinery, and are of great significance for fault diagnosis and life monitoring of rolling bearings. Analyzing fault signals, extracting effective degradation information and establishing corresponding models are the premise of residual life prediction of rolling bearings. In this paper, first, the time-domain features were extracted to form the eigenvector of the vibration signal, and then the index representing the bearing degradation was found. It was found that the time-domain index could effectively describe the degradation information of the bearing, and the multi-dimensional time-domain characteristic information could effectively describe the attenuation trend of the vibration signal of the rolling bearing. On this basis, appropriate feature vectors were selected to describe the degradation characteristics of bearings. Aiming at the problems of large amounts of data, large amounts of information redundancy and unclear performance index of multi-dimensional feature vectors, the dimensionality of multi-dimensional feature vectors was reduced with principal component analysis, thus, simplifying the multi-dimensional feature vectors and reducing the information redundancy. Finally, in view of the support vector machine (SVM)’s needs to determine kernel function parameters and penalty factors, the squirrel optimization algorithm (SOA) was used to adaptively select parameters and establish the state-life evaluation model of rolling bearings. In addition, mean absolute error (MAE) and root mean squared error (RMSE) were used to comprehensively evaluate SOA. The results showed that the SOA reduced the errors by 5.1% and 13.6%, respectively, compared with a genetic algorithm (GA). Compared with particle swarm optimization (PSO), the error of SOA was reduced by 7.6% and 15.9%, respectively. It showed that SOA-SVM effectively improved the adaptability and regression performance of SVM, thus, significantly improving the prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助luo采纳,获得10
1秒前
1秒前
玖玖完成签到,获得积分10
1秒前
懦弱的咖啡豆完成签到,获得积分10
1秒前
低级趣味发布了新的文献求助20
2秒前
Efei完成签到,获得积分10
2秒前
2秒前
小马甲应助勤恳的灵雁采纳,获得10
2秒前
小霖完成签到,获得积分10
2秒前
结实山水完成签到 ,获得积分10
2秒前
3秒前
橙子完成签到,获得积分10
3秒前
3秒前
辛勤香岚完成签到,获得积分10
3秒前
李小新完成签到 ,获得积分10
3秒前
3秒前
3秒前
Akim应助dudu采纳,获得10
5秒前
5秒前
5秒前
傅剑寒发布了新的文献求助10
6秒前
科研小白发布了新的文献求助10
6秒前
半山完成签到,获得积分10
6秒前
Ava应助曾经以亦采纳,获得10
6秒前
6秒前
和谐如容完成签到,获得积分10
7秒前
LL发布了新的文献求助10
7秒前
甜蜜的白风完成签到,获得积分10
7秒前
chai发布了新的文献求助10
8秒前
斯文败类应助小金鱼儿采纳,获得10
8秒前
12完成签到,获得积分10
9秒前
9秒前
南絮发布了新的文献求助10
10秒前
Dester发布了新的文献求助10
10秒前
aha完成签到,获得积分10
10秒前
啊七飞发布了新的文献求助10
10秒前
11秒前
DYT完成签到,获得积分10
11秒前
小蘑菇应助白藏主采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271