Remaining Useful Life Estimation of Rolling Bearing Based on SOA-SVM Algorithm

冗余(工程) 方位(导航) 支持向量机 时域 算法 计算机科学 模式识别(心理学) 特征(语言学) 特征向量 振动 残余物 人工智能 计算机视觉 语言学 哲学 物理 量子力学 操作系统
作者
Li Xiao,Songyang An,Yuanyuan Shi,Yizhe Huang
出处
期刊:Machines [MDPI AG]
卷期号:10 (9): 729-729
标识
DOI:10.3390/machines10090729
摘要

Rolling bearings are an important part of rotating machinery, and are of great significance for fault diagnosis and life monitoring of rolling bearings. Analyzing fault signals, extracting effective degradation information and establishing corresponding models are the premise of residual life prediction of rolling bearings. In this paper, first, the time-domain features were extracted to form the eigenvector of the vibration signal, and then the index representing the bearing degradation was found. It was found that the time-domain index could effectively describe the degradation information of the bearing, and the multi-dimensional time-domain characteristic information could effectively describe the attenuation trend of the vibration signal of the rolling bearing. On this basis, appropriate feature vectors were selected to describe the degradation characteristics of bearings. Aiming at the problems of large amounts of data, large amounts of information redundancy and unclear performance index of multi-dimensional feature vectors, the dimensionality of multi-dimensional feature vectors was reduced with principal component analysis, thus, simplifying the multi-dimensional feature vectors and reducing the information redundancy. Finally, in view of the support vector machine (SVM)’s needs to determine kernel function parameters and penalty factors, the squirrel optimization algorithm (SOA) was used to adaptively select parameters and establish the state-life evaluation model of rolling bearings. In addition, mean absolute error (MAE) and root mean squared error (RMSE) were used to comprehensively evaluate SOA. The results showed that the SOA reduced the errors by 5.1% and 13.6%, respectively, compared with a genetic algorithm (GA). Compared with particle swarm optimization (PSO), the error of SOA was reduced by 7.6% and 15.9%, respectively. It showed that SOA-SVM effectively improved the adaptability and regression performance of SVM, thus, significantly improving the prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lian完成签到,获得积分10
刚刚
刚刚
1秒前
科研通AI2S应助shadow采纳,获得10
1秒前
失眠的蓝完成签到,获得积分10
2秒前
Gia发布了新的文献求助10
2秒前
lx33101128发布了新的文献求助10
2秒前
科目三应助面包采纳,获得10
2秒前
3秒前
互余子完成签到,获得积分10
3秒前
小马甲应助逆麟采纳,获得10
3秒前
积极的逍遥完成签到,获得积分10
4秒前
哆啦A梦发布了新的文献求助10
4秒前
4秒前
小兵大大怪完成签到,获得积分10
5秒前
何松发布了新的文献求助10
5秒前
iNk应助勤恳的眼神采纳,获得10
5秒前
5秒前
Mia完成签到,获得积分10
6秒前
6秒前
情怀应助OoOo采纳,获得10
7秒前
共享精神应助wkkky采纳,获得10
7秒前
7秒前
希望天下0贩的0应助zero灬采纳,获得10
7秒前
yjf完成签到,获得积分10
8秒前
哈哈哈关注了科研通微信公众号
8秒前
特特特发布了新的文献求助10
8秒前
8秒前
文静谷冬发布了新的文献求助10
9秒前
科研通AI6应助fantastycrane采纳,获得10
9秒前
任梁辰发布了新的文献求助10
9秒前
方梦坤发布了新的文献求助10
9秒前
沟里的水草精完成签到,获得积分20
9秒前
赛赛发布了新的文献求助10
10秒前
大气雨灵发布了新的文献求助10
11秒前
wwwww发布了新的文献求助10
11秒前
liwen完成签到,获得积分10
11秒前
12秒前
禾之发布了新的文献求助10
12秒前
小圆完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435610
求助须知:如何正确求助?哪些是违规求助? 4547679
关于积分的说明 14210287
捐赠科研通 4467942
什么是DOI,文献DOI怎么找? 2448805
邀请新用户注册赠送积分活动 1439683
关于科研通互助平台的介绍 1416287