Remaining Useful Life Estimation of Rolling Bearing Based on SOA-SVM Algorithm

冗余(工程) 方位(导航) 支持向量机 时域 算法 计算机科学 模式识别(心理学) 特征(语言学) 特征向量 振动 残余物 人工智能 计算机视觉 操作系统 物理 哲学 量子力学 语言学
作者
Li Xiao,Songyang An,Yuanyuan Shi,Yizhe Huang
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:10 (9): 729-729
标识
DOI:10.3390/machines10090729
摘要

Rolling bearings are an important part of rotating machinery, and are of great significance for fault diagnosis and life monitoring of rolling bearings. Analyzing fault signals, extracting effective degradation information and establishing corresponding models are the premise of residual life prediction of rolling bearings. In this paper, first, the time-domain features were extracted to form the eigenvector of the vibration signal, and then the index representing the bearing degradation was found. It was found that the time-domain index could effectively describe the degradation information of the bearing, and the multi-dimensional time-domain characteristic information could effectively describe the attenuation trend of the vibration signal of the rolling bearing. On this basis, appropriate feature vectors were selected to describe the degradation characteristics of bearings. Aiming at the problems of large amounts of data, large amounts of information redundancy and unclear performance index of multi-dimensional feature vectors, the dimensionality of multi-dimensional feature vectors was reduced with principal component analysis, thus, simplifying the multi-dimensional feature vectors and reducing the information redundancy. Finally, in view of the support vector machine (SVM)’s needs to determine kernel function parameters and penalty factors, the squirrel optimization algorithm (SOA) was used to adaptively select parameters and establish the state-life evaluation model of rolling bearings. In addition, mean absolute error (MAE) and root mean squared error (RMSE) were used to comprehensively evaluate SOA. The results showed that the SOA reduced the errors by 5.1% and 13.6%, respectively, compared with a genetic algorithm (GA). Compared with particle swarm optimization (PSO), the error of SOA was reduced by 7.6% and 15.9%, respectively. It showed that SOA-SVM effectively improved the adaptability and regression performance of SVM, thus, significantly improving the prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
漂亮天真完成签到,获得积分10
刚刚
草莓雪酪应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
七月流火应助科研通管家采纳,获得150
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
老迟到的土豆完成签到 ,获得积分10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
小八统治世界完成签到,获得积分10
刚刚
七月流火应助科研通管家采纳,获得150
刚刚
1秒前
科目三应助科研通管家采纳,获得10
1秒前
雷乾发布了新的文献求助10
1秒前
1秒前
1秒前
下雨天的树完成签到,获得积分10
1秒前
FR完成签到,获得积分10
2秒前
缓慢天菱完成签到,获得积分10
2秒前
fhhkckk3发布了新的文献求助20
2秒前
liuxinyu完成签到 ,获得积分10
2秒前
2秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
3秒前
blink完成签到,获得积分10
4秒前
4秒前
今天要早睡完成签到,获得积分10
4秒前
钩子89应助同尘采纳,获得20
5秒前
Levi李发布了新的文献求助10
5秒前
东日完成签到,获得积分10
5秒前
cheng4046完成签到,获得积分10
5秒前
zz2905完成签到,获得积分10
6秒前
悠夏sunny完成签到,获得积分0
6秒前
ttkd11完成签到,获得积分10
6秒前
6秒前
小马甲应助瘦瘦半山采纳,获得10
7秒前
昨夜雨疏风骤完成签到,获得积分10
7秒前
8秒前
浮游应助re采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256668
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753577
捐赠科研通 4292020
什么是DOI,文献DOI怎么找? 2355264
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312465