Remaining Useful Life Estimation of Rolling Bearing Based on SOA-SVM Algorithm

冗余(工程) 方位(导航) 支持向量机 时域 算法 计算机科学 模式识别(心理学) 特征(语言学) 特征向量 振动 残余物 人工智能 计算机视觉 操作系统 物理 哲学 量子力学 语言学
作者
Li Xiao,Songyang An,Yuanyuan Shi,Yizhe Huang
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:10 (9): 729-729
标识
DOI:10.3390/machines10090729
摘要

Rolling bearings are an important part of rotating machinery, and are of great significance for fault diagnosis and life monitoring of rolling bearings. Analyzing fault signals, extracting effective degradation information and establishing corresponding models are the premise of residual life prediction of rolling bearings. In this paper, first, the time-domain features were extracted to form the eigenvector of the vibration signal, and then the index representing the bearing degradation was found. It was found that the time-domain index could effectively describe the degradation information of the bearing, and the multi-dimensional time-domain characteristic information could effectively describe the attenuation trend of the vibration signal of the rolling bearing. On this basis, appropriate feature vectors were selected to describe the degradation characteristics of bearings. Aiming at the problems of large amounts of data, large amounts of information redundancy and unclear performance index of multi-dimensional feature vectors, the dimensionality of multi-dimensional feature vectors was reduced with principal component analysis, thus, simplifying the multi-dimensional feature vectors and reducing the information redundancy. Finally, in view of the support vector machine (SVM)’s needs to determine kernel function parameters and penalty factors, the squirrel optimization algorithm (SOA) was used to adaptively select parameters and establish the state-life evaluation model of rolling bearings. In addition, mean absolute error (MAE) and root mean squared error (RMSE) were used to comprehensively evaluate SOA. The results showed that the SOA reduced the errors by 5.1% and 13.6%, respectively, compared with a genetic algorithm (GA). Compared with particle swarm optimization (PSO), the error of SOA was reduced by 7.6% and 15.9%, respectively. It showed that SOA-SVM effectively improved the adaptability and regression performance of SVM, thus, significantly improving the prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑笑完成签到,获得积分10
1秒前
Li发布了新的文献求助10
1秒前
hxm发布了新的文献求助10
1秒前
故酒应助不安梦桃采纳,获得10
3秒前
领导范儿应助diudiu采纳,获得10
3秒前
4秒前
4秒前
4秒前
娃娃哈发布了新的文献求助10
4秒前
4秒前
李li完成签到,获得积分10
5秒前
7秒前
Rose发布了新的文献求助10
8秒前
9秒前
xc发布了新的文献求助10
9秒前
yuki完成签到,获得积分10
9秒前
murph0622完成签到,获得积分10
10秒前
迅速大白完成签到 ,获得积分10
10秒前
10秒前
10秒前
13秒前
雪范完成签到 ,获得积分10
13秒前
忧虑的靖巧完成签到 ,获得积分10
13秒前
周爱李发布了新的文献求助10
13秒前
15秒前
15秒前
wang完成签到 ,获得积分10
15秒前
孙新雨发布了新的文献求助10
16秒前
16秒前
bkagyin应助Ee采纳,获得10
16秒前
17秒前
舒心梦菲完成签到 ,获得积分10
18秒前
gnufgg完成签到,获得积分10
18秒前
殷勤的可兰完成签到,获得积分10
19秒前
牛蛙丶丶发布了新的文献求助30
19秒前
YuanF发布了新的文献求助10
19秒前
Kiki完成签到 ,获得积分10
20秒前
21秒前
21秒前
林间清湖发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924525
求助须知:如何正确求助?哪些是违规求助? 4194571
关于积分的说明 13029123
捐赠科研通 3966454
什么是DOI,文献DOI怎么找? 2173951
邀请新用户注册赠送积分活动 1191426
关于科研通互助平台的介绍 1100971