Remaining Useful Life Estimation of Rolling Bearing Based on SOA-SVM Algorithm

冗余(工程) 方位(导航) 支持向量机 时域 算法 计算机科学 模式识别(心理学) 特征(语言学) 特征向量 振动 残余物 人工智能 计算机视觉 操作系统 物理 哲学 量子力学 语言学
作者
Li Xiao,Songyang An,Yuanyuan Shi,Yizhe Huang
出处
期刊:Machines [MDPI AG]
卷期号:10 (9): 729-729
标识
DOI:10.3390/machines10090729
摘要

Rolling bearings are an important part of rotating machinery, and are of great significance for fault diagnosis and life monitoring of rolling bearings. Analyzing fault signals, extracting effective degradation information and establishing corresponding models are the premise of residual life prediction of rolling bearings. In this paper, first, the time-domain features were extracted to form the eigenvector of the vibration signal, and then the index representing the bearing degradation was found. It was found that the time-domain index could effectively describe the degradation information of the bearing, and the multi-dimensional time-domain characteristic information could effectively describe the attenuation trend of the vibration signal of the rolling bearing. On this basis, appropriate feature vectors were selected to describe the degradation characteristics of bearings. Aiming at the problems of large amounts of data, large amounts of information redundancy and unclear performance index of multi-dimensional feature vectors, the dimensionality of multi-dimensional feature vectors was reduced with principal component analysis, thus, simplifying the multi-dimensional feature vectors and reducing the information redundancy. Finally, in view of the support vector machine (SVM)’s needs to determine kernel function parameters and penalty factors, the squirrel optimization algorithm (SOA) was used to adaptively select parameters and establish the state-life evaluation model of rolling bearings. In addition, mean absolute error (MAE) and root mean squared error (RMSE) were used to comprehensively evaluate SOA. The results showed that the SOA reduced the errors by 5.1% and 13.6%, respectively, compared with a genetic algorithm (GA). Compared with particle swarm optimization (PSO), the error of SOA was reduced by 7.6% and 15.9%, respectively. It showed that SOA-SVM effectively improved the adaptability and regression performance of SVM, thus, significantly improving the prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依旧完成签到,获得积分10
刚刚
星辰大海应助yutingemail采纳,获得10
刚刚
YaRu应助倒头睡不醒采纳,获得10
1秒前
FashionBoy应助小丸子采纳,获得10
1秒前
nn发布了新的文献求助100
1秒前
1秒前
雪笙完成签到 ,获得积分10
1秒前
孙雍博发布了新的文献求助10
2秒前
2秒前
云溪完成签到,获得积分10
2秒前
2秒前
林夕完成签到,获得积分10
3秒前
大力沛萍发布了新的文献求助10
3秒前
Akim应助zhuxi采纳,获得10
3秒前
3秒前
大模型应助玖锱采纳,获得10
4秒前
香蕉凌蝶完成签到,获得积分10
4秒前
BowieHuang应助shusen采纳,获得10
4秒前
4秒前
现在拨打发布了新的文献求助10
4秒前
finemaker完成签到,获得积分10
4秒前
AD应助cdragon采纳,获得10
4秒前
4秒前
Jasper应助小胖鱼采纳,获得10
4秒前
草莓奶冻完成签到,获得积分10
5秒前
5秒前
科研通AI6应助Radarax采纳,获得10
6秒前
顺利秋灵完成签到,获得积分10
6秒前
科研发布了新的文献求助10
6秒前
无极微光应助欣喜紫真采纳,获得20
6秒前
zhou完成签到,获得积分10
6秒前
7秒前
怡然的幻灵完成签到,获得积分10
8秒前
孙尼美完成签到,获得积分10
8秒前
lin完成签到,获得积分10
8秒前
9秒前
顾矜应助派大星采纳,获得10
9秒前
wonderwander发布了新的文献求助10
10秒前
梦梦完成签到,获得积分20
10秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066