Remaining Useful Life Estimation of Rolling Bearing Based on SOA-SVM Algorithm

冗余(工程) 方位(导航) 支持向量机 时域 算法 计算机科学 模式识别(心理学) 特征(语言学) 特征向量 振动 残余物 人工智能 计算机视觉 操作系统 物理 哲学 量子力学 语言学
作者
Li Xiao,Songyang An,Yuanyuan Shi,Yizhe Huang
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:10 (9): 729-729
标识
DOI:10.3390/machines10090729
摘要

Rolling bearings are an important part of rotating machinery, and are of great significance for fault diagnosis and life monitoring of rolling bearings. Analyzing fault signals, extracting effective degradation information and establishing corresponding models are the premise of residual life prediction of rolling bearings. In this paper, first, the time-domain features were extracted to form the eigenvector of the vibration signal, and then the index representing the bearing degradation was found. It was found that the time-domain index could effectively describe the degradation information of the bearing, and the multi-dimensional time-domain characteristic information could effectively describe the attenuation trend of the vibration signal of the rolling bearing. On this basis, appropriate feature vectors were selected to describe the degradation characteristics of bearings. Aiming at the problems of large amounts of data, large amounts of information redundancy and unclear performance index of multi-dimensional feature vectors, the dimensionality of multi-dimensional feature vectors was reduced with principal component analysis, thus, simplifying the multi-dimensional feature vectors and reducing the information redundancy. Finally, in view of the support vector machine (SVM)’s needs to determine kernel function parameters and penalty factors, the squirrel optimization algorithm (SOA) was used to adaptively select parameters and establish the state-life evaluation model of rolling bearings. In addition, mean absolute error (MAE) and root mean squared error (RMSE) were used to comprehensively evaluate SOA. The results showed that the SOA reduced the errors by 5.1% and 13.6%, respectively, compared with a genetic algorithm (GA). Compared with particle swarm optimization (PSO), the error of SOA was reduced by 7.6% and 15.9%, respectively. It showed that SOA-SVM effectively improved the adaptability and regression performance of SVM, thus, significantly improving the prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小程同学完成签到 ,获得积分10
刚刚
boltos发布了新的文献求助10
刚刚
舒适灵完成签到,获得积分10
1秒前
lkjh完成签到,获得积分10
1秒前
冷静飞柏发布了新的文献求助10
2秒前
zlf完成签到,获得积分10
2秒前
李爱国应助晚星采纳,获得10
2秒前
大模型应助君君采纳,获得10
2秒前
丘比特应助君君采纳,获得10
2秒前
开心人达完成签到,获得积分10
2秒前
2秒前
雪白的千雁完成签到 ,获得积分10
3秒前
3秒前
4秒前
冷静太君完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
pineapple yang完成签到,获得积分10
5秒前
qweasdzxcqwe发布了新的文献求助10
5秒前
namin完成签到,获得积分10
6秒前
rico完成签到,获得积分10
6秒前
顺顺安完成签到,获得积分10
6秒前
a水爱科研发布了新的文献求助10
7秒前
橙子才是唯一的水果完成签到,获得积分10
7秒前
hongw_liu完成签到,获得积分10
7秒前
烩面大师发布了新的文献求助10
9秒前
北欧海盗完成签到,获得积分10
9秒前
赘婿应助如初采纳,获得10
10秒前
lmy完成签到 ,获得积分10
10秒前
靓丽安珊完成签到,获得积分10
10秒前
orixero应助勤恳的从波采纳,获得10
11秒前
hayden发布了新的文献求助10
12秒前
1234hai发布了新的文献求助10
12秒前
12秒前
鹿七七啊完成签到 ,获得积分10
12秒前
jojodan应助大大怪采纳,获得10
12秒前
fmd123发布了新的文献求助10
13秒前
可爱的函函应助sonder采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600