Remaining Useful Life Estimation of Rolling Bearing Based on SOA-SVM Algorithm

冗余(工程) 方位(导航) 支持向量机 时域 算法 计算机科学 模式识别(心理学) 特征(语言学) 特征向量 振动 残余物 人工智能 计算机视觉 操作系统 物理 哲学 量子力学 语言学
作者
Li Xiao,Songyang An,Yuanyuan Shi,Yizhe Huang
出处
期刊:Machines [MDPI AG]
卷期号:10 (9): 729-729
标识
DOI:10.3390/machines10090729
摘要

Rolling bearings are an important part of rotating machinery, and are of great significance for fault diagnosis and life monitoring of rolling bearings. Analyzing fault signals, extracting effective degradation information and establishing corresponding models are the premise of residual life prediction of rolling bearings. In this paper, first, the time-domain features were extracted to form the eigenvector of the vibration signal, and then the index representing the bearing degradation was found. It was found that the time-domain index could effectively describe the degradation information of the bearing, and the multi-dimensional time-domain characteristic information could effectively describe the attenuation trend of the vibration signal of the rolling bearing. On this basis, appropriate feature vectors were selected to describe the degradation characteristics of bearings. Aiming at the problems of large amounts of data, large amounts of information redundancy and unclear performance index of multi-dimensional feature vectors, the dimensionality of multi-dimensional feature vectors was reduced with principal component analysis, thus, simplifying the multi-dimensional feature vectors and reducing the information redundancy. Finally, in view of the support vector machine (SVM)’s needs to determine kernel function parameters and penalty factors, the squirrel optimization algorithm (SOA) was used to adaptively select parameters and establish the state-life evaluation model of rolling bearings. In addition, mean absolute error (MAE) and root mean squared error (RMSE) were used to comprehensively evaluate SOA. The results showed that the SOA reduced the errors by 5.1% and 13.6%, respectively, compared with a genetic algorithm (GA). Compared with particle swarm optimization (PSO), the error of SOA was reduced by 7.6% and 15.9%, respectively. It showed that SOA-SVM effectively improved the adaptability and regression performance of SVM, thus, significantly improving the prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心凝珍发布了新的文献求助10
1秒前
3秒前
独特的兰完成签到,获得积分10
5秒前
传奇3应助陈豆豆采纳,获得10
5秒前
学林书屋发布了新的文献求助30
5秒前
6秒前
月流瓦发布了新的文献求助20
6秒前
6秒前
jingyu完成签到,获得积分20
7秒前
翟淑雨完成签到,获得积分10
8秒前
IV完成签到,获得积分10
8秒前
fyukgfdyifotrf完成签到,获得积分10
9秒前
9秒前
小橙完成签到 ,获得积分10
10秒前
CodeCraft应助LucyLi采纳,获得10
10秒前
111231完成签到,获得积分10
10秒前
小木林发布了新的文献求助10
11秒前
kle完成签到,获得积分10
11秒前
11秒前
宓人英完成签到,获得积分10
11秒前
11秒前
12秒前
wyx完成签到,获得积分10
13秒前
炙热沛白发布了新的文献求助10
13秒前
orixero应助一二采纳,获得10
14秒前
busuan发布了新的文献求助30
14秒前
量子星尘发布了新的文献求助10
14秒前
18秒前
jingyu发布了新的文献求助10
19秒前
QH_Y完成签到,获得积分10
20秒前
研友_n2r2Kn完成签到,获得积分10
20秒前
Orange应助月流瓦采纳,获得10
20秒前
20秒前
太叔若南完成签到 ,获得积分10
22秒前
24秒前
Ava应助伶俐的如容采纳,获得20
24秒前
24秒前
24秒前
学林书屋发布了新的文献求助30
25秒前
tartyang发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602595
求助须知:如何正确求助?哪些是违规求助? 4687667
关于积分的说明 14850700
捐赠科研通 4684658
什么是DOI,文献DOI怎么找? 2539964
邀请新用户注册赠送积分活动 1506717
关于科研通互助平台的介绍 1471428