Remaining Useful Life Estimation of Rolling Bearing Based on SOA-SVM Algorithm

冗余(工程) 方位(导航) 支持向量机 时域 算法 计算机科学 模式识别(心理学) 特征(语言学) 特征向量 振动 残余物 人工智能 计算机视觉 语言学 哲学 物理 量子力学 操作系统
作者
Li Xiao,Songyang An,Yuanyuan Shi,Yizhe Huang
出处
期刊:Machines [MDPI AG]
卷期号:10 (9): 729-729
标识
DOI:10.3390/machines10090729
摘要

Rolling bearings are an important part of rotating machinery, and are of great significance for fault diagnosis and life monitoring of rolling bearings. Analyzing fault signals, extracting effective degradation information and establishing corresponding models are the premise of residual life prediction of rolling bearings. In this paper, first, the time-domain features were extracted to form the eigenvector of the vibration signal, and then the index representing the bearing degradation was found. It was found that the time-domain index could effectively describe the degradation information of the bearing, and the multi-dimensional time-domain characteristic information could effectively describe the attenuation trend of the vibration signal of the rolling bearing. On this basis, appropriate feature vectors were selected to describe the degradation characteristics of bearings. Aiming at the problems of large amounts of data, large amounts of information redundancy and unclear performance index of multi-dimensional feature vectors, the dimensionality of multi-dimensional feature vectors was reduced with principal component analysis, thus, simplifying the multi-dimensional feature vectors and reducing the information redundancy. Finally, in view of the support vector machine (SVM)’s needs to determine kernel function parameters and penalty factors, the squirrel optimization algorithm (SOA) was used to adaptively select parameters and establish the state-life evaluation model of rolling bearings. In addition, mean absolute error (MAE) and root mean squared error (RMSE) were used to comprehensively evaluate SOA. The results showed that the SOA reduced the errors by 5.1% and 13.6%, respectively, compared with a genetic algorithm (GA). Compared with particle swarm optimization (PSO), the error of SOA was reduced by 7.6% and 15.9%, respectively. It showed that SOA-SVM effectively improved the adaptability and regression performance of SVM, thus, significantly improving the prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dy1994完成签到,获得积分10
刚刚
仙贝完成签到,获得积分10
刚刚
刚刚
排骨炖豆角完成签到 ,获得积分10
1秒前
4秒前
大可奇完成签到,获得积分10
4秒前
don发布了新的文献求助10
4秒前
小纸鹤发布了新的文献求助10
4秒前
求知小生完成签到,获得积分10
5秒前
大可奇发布了新的文献求助10
8秒前
白枫完成签到 ,获得积分10
8秒前
hanyy完成签到,获得积分10
9秒前
xjcy应助IIIris采纳,获得10
10秒前
潇洒的竹杖应助IIIris采纳,获得30
10秒前
美满的小蘑菇完成签到 ,获得积分10
12秒前
14秒前
Hey发布了新的文献求助10
14秒前
从容芮应助小纸鹤采纳,获得30
17秒前
青木完成签到 ,获得积分10
18秒前
19秒前
IIIris完成签到,获得积分10
21秒前
sunny发布了新的文献求助10
23秒前
23秒前
星辰大海应助花花采纳,获得10
24秒前
25秒前
你好啊发布了新的文献求助10
26秒前
Apricity完成签到,获得积分10
27秒前
xslj完成签到 ,获得积分10
29秒前
29秒前
Apricity发布了新的文献求助10
30秒前
lin发布了新的文献求助50
30秒前
30秒前
甜美的夏之完成签到,获得积分10
32秒前
hushengtan发布了新的文献求助10
32秒前
怕孤单的寄容完成签到 ,获得积分10
32秒前
在下观海丶完成签到,获得积分10
34秒前
pinghu完成签到,获得积分10
36秒前
hawaii66完成签到,获得积分10
37秒前
38秒前
科研dddog完成签到,获得积分10
41秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139874
求助须知:如何正确求助?哪些是违规求助? 2790776
关于积分的说明 7796637
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301692
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194