Data Mode Related Interpretable Transformer Network for Predictive Modeling and Key Sample Analysis in Industrial Processes

可解释性 计算机科学 数据挖掘 原始数据 数据建模 钥匙(锁) 过程(计算) 工业生产 机器学习 人工智能 数据库 计算机安全 凯恩斯经济学 经济 程序设计语言 操作系统
作者
Diju Liu,Yalin Wang,Chenliang Liu,Xiaofeng Yuan,Chunhua Yang,Weihua Gui
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (9): 9325-9336 被引量:55
标识
DOI:10.1109/tii.2022.3227731
摘要

Accurate prediction of quality variables that are difficult to measure is crucial for industrial process control and optimization. However, the fluctuations in raw material quality and production conditions may cause industrial process data to be distributed in multiple working conditions. The data under the same working condition show similar characteristics, which are often defined as one data mode. Hence, the overall process data exhibit multimode characteristics, which brings great challenges in developing a uniform prediction model. Besides, the noninterpretability of the existing data-driven prediction models brings great resistance to their practical application. To address these issues, this article proposes a novel data mode related interpretable transformer network (DMRI-Former) for predictive modeling and key sample analysis in industrial processes. In DMRI-Former, a novel data mode related interpretable self-attention mechanism is designed to enhance the homomode perceptual ability of each individual mode while also capturing cross-mode features of different modes. Moreover, the key samples under different modes can be discovered using DMRI-Former, which further improves the interpretability of the modeling process. Finally, the superiority of the proposed DMRI-Former is verified in two real-world industrial processes compared to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关晚竹完成签到,获得积分20
1秒前
科研通AI5应助HughWang采纳,获得30
1秒前
2秒前
2秒前
5秒前
CipherSage应助关晚竹采纳,获得10
8秒前
8秒前
今天想要吃饭完成签到,获得积分10
9秒前
柊苒发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
AskNature完成签到,获得积分10
11秒前
孙颢然完成签到 ,获得积分10
12秒前
12秒前
陶醉雪青应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
Tourist应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
lilili应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
wxyshare应助科研通管家采纳,获得10
14秒前
BBy_Smile应助科研通管家采纳,获得10
14秒前
XXX完成签到,获得积分10
14秒前
科研通AI6应助科研通管家采纳,获得30
14秒前
陶醉雪青应助科研通管家采纳,获得10
14秒前
文艺紫菜应助科研通管家采纳,获得10
15秒前
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
深情安青应助临风采纳,获得10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134862
求助须知:如何正确求助?哪些是违规求助? 4335512
关于积分的说明 13506957
捐赠科研通 4173083
什么是DOI,文献DOI怎么找? 2288120
邀请新用户注册赠送积分活动 1288949
关于科研通互助平台的介绍 1229971