Data Mode Related Interpretable Transformer Network for Predictive Modeling and Key Sample Analysis in Industrial Processes

可解释性 计算机科学 数据挖掘 原始数据 数据建模 钥匙(锁) 过程(计算) 工业生产 机器学习 人工智能 数据库 计算机安全 操作系统 经济 凯恩斯经济学 程序设计语言
作者
Diju Liu,Yalin Wang,Chenliang Liu,Xiaofeng Yuan,Chunhua Yang,Weihua Gui
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (9): 9325-9336 被引量:43
标识
DOI:10.1109/tii.2022.3227731
摘要

Accurate prediction of quality variables that are difficult to measure is crucial for industrial process control and optimization. However, the fluctuations in raw material quality and production conditions may cause industrial process data to be distributed in multiple working conditions. The data under the same working condition show similar characteristics, which are often defined as one data mode. Hence, the overall process data exhibit multimode characteristics, which brings great challenges in developing a uniform prediction model. Besides, the noninterpretability of the existing data-driven prediction models brings great resistance to their practical application. To address these issues, this article proposes a novel data mode related interpretable transformer network (DMRI-Former) for predictive modeling and key sample analysis in industrial processes. In DMRI-Former, a novel data mode related interpretable self-attention mechanism is designed to enhance the homomode perceptual ability of each individual mode while also capturing cross-mode features of different modes. Moreover, the key samples under different modes can be discovered using DMRI-Former, which further improves the interpretability of the modeling process. Finally, the superiority of the proposed DMRI-Former is verified in two real-world industrial processes compared to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
倔强的大萝卜完成签到,获得积分0
2秒前
3秒前
3秒前
3秒前
4秒前
Ankangg完成签到,获得积分10
4秒前
啊啊啊完成签到 ,获得积分10
4秒前
aaaabc发布了新的文献求助20
4秒前
摆烂王子完成签到,获得积分10
5秒前
小离完成签到,获得积分10
5秒前
大个应助哲999采纳,获得10
6秒前
萌道发布了新的文献求助10
6秒前
6秒前
6秒前
yrea完成签到,获得积分10
6秒前
7秒前
JamesPei应助白华苍松采纳,获得10
8秒前
wangn发布了新的文献求助10
8秒前
挽歌发布了新的文献求助10
8秒前
8秒前
Zhang发布了新的文献求助10
8秒前
Owen应助jogrgr采纳,获得10
8秒前
wjw关闭了wjw文献求助
8秒前
9秒前
9秒前
9秒前
9秒前
Ava应助侦察兵采纳,获得10
10秒前
10秒前
rookie_b0发布了新的文献求助10
10秒前
邓代容完成签到 ,获得积分10
11秒前
可爱的函函应助南逸然采纳,获得10
11秒前
HiK完成签到,获得积分10
11秒前
gaos发布了新的文献求助10
11秒前
12秒前
外向从灵发布了新的文献求助10
12秒前
12秒前
萌道完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759