On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study

人工智能 局部异常因子 聚类分析 机器学习 模式识别(心理学)
作者
Guilherme M. Campos,Arthur Zimek,Jörg Sander,Ricardo J. G. B. Campello,Barbora Micenková,Erich Schubert,Ira Assent,Michael E. Houle
出处
期刊:Data Mining and Knowledge Discovery [Springer Nature]
卷期号:30 (4): 891-927 被引量:417
标识
DOI:10.1007/s10618-015-0444-8
摘要

The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate benchmark datasets with ground truth annotation is a significant impediment to the evaluation of outlier methods. Even when labeled datasets are available, their suitability for the outlier detection task is typically unknown. Furthermore, the biases of commonly-used evaluation measures are not fully understood. It is thus difficult to ascertain the extent to which newly-proposed outlier detection methods improve over established methods. In this paper, we perform an extensive experimental study on the performance of a representative set of standard k nearest neighborhood-based methods for unsupervised outlier detection, across a wide variety of datasets prepared for this purpose. Based on the overall performance of the outlier detection methods, we provide a characterization of the datasets themselves, and discuss their suitability as outlier detection benchmark sets. We also examine the most commonly-used measures for comparing the performance of different methods, and suggest adaptations that are more suitable for the evaluation of outlier detection results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
小嘉贞完成签到,获得积分10
1秒前
1秒前
黄桂雄完成签到,获得积分10
1秒前
热情的绿真关注了科研通微信公众号
2秒前
2秒前
祖母绿袖子完成签到,获得积分10
3秒前
3秒前
972672162发布了新的文献求助10
3秒前
磊878完成签到 ,获得积分10
3秒前
江湖小妖完成签到 ,获得积分0
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
maox1aoxin应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
华康完成签到,获得积分20
4秒前
JamesPei应助木mu采纳,获得10
4秒前
甜9完成签到 ,获得积分10
5秒前
5秒前
5秒前
哄哄发布了新的文献求助10
5秒前
rocket完成签到,获得积分10
5秒前
Sophie完成签到 ,获得积分10
5秒前
kanoz完成签到,获得积分10
6秒前
kaikai发布了新的文献求助10
6秒前
甄开心发布了新的文献求助10
6秒前
BCKT完成签到,获得积分10
6秒前
有魅力哈密瓜完成签到,获得积分10
7秒前
汤米bb发布了新的文献求助10
7秒前
7秒前
甜甜语堂发布了新的文献求助10
7秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 960
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294908
求助须知:如何正确求助?哪些是违规求助? 2930855
关于积分的说明 8448799
捐赠科研通 2603376
什么是DOI,文献DOI怎么找? 1421085
科研通“疑难数据库(出版商)”最低求助积分说明 660782
邀请新用户注册赠送积分活动 643592