Data-driven temperature estimation of non-contact solids using deep-learning reduced-order models

外推法 计算机科学 人工神经网络 投影(关系代数) 人工智能 数据挖掘 机器学习 算法 数学 数学分析
作者
Genghui Jiang,Ming Kang,Zhenwei Cai,Yingzheng Liu,Weizhe Wang
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:185: 122383-122383 被引量:9
标识
DOI:10.1016/j.ijheatmasstransfer.2021.122383
摘要

A data-driven deep-learning reduced-order models (DL-ROMs) framework to accurately evaluate the temperature field of non-contact solids without available sensors is proposed in this paper. The framework combines a neural network (NN) and model reduction. The NN is trained and the sub-ROMs of internal non-contact solids are established based on a shared sample library in the offline stage. Specifically, proper orthogonal decomposition (POD) is used for data compression and feature extraction for a high-fidelity physical solution of the sample library, and then a lower-dimension approximation system is constructed on the projection space spanned by a set of reduced orthogonal basis. An NN is introduced to implicitly map inlet conditions or temperature data measured by external sensors to the feature coefficients of the established sub-ROMs regardless of the complex flow heat transfer mechanism. Prediction under a new inlet condition or monitoring based on measured temperatures can be conducted using this framework in the online stage. Six groups testing in-sample and out-of-sample cases are used to verify the feasibility and robustness of the framework. The results show that the proposed framework can effectively predict and monitor the temperature field of internal non-contact solids for in-sample cases. The framework is also suitable for extrapolation cases that exceed 10% of the sample range. This framework is used to estimate the temperature field of non-contact solids in complex industrial problems to further develop parametric design, real-time prediction, optimal control strategies, and online monitoring and maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助笑嘻嘻采纳,获得10
刚刚
1秒前
Ava应助满意绿柳采纳,获得10
1秒前
2秒前
2秒前
小敏完成签到,获得积分10
2秒前
聪明的书翠完成签到,获得积分10
3秒前
迷失浪人发布了新的文献求助10
6秒前
ZYCong发布了新的文献求助10
6秒前
oceanao应助玻璃杯采纳,获得10
6秒前
桃桃发布了新的文献求助10
7秒前
7秒前
好困应助wjn采纳,获得10
8秒前
zzulyy完成签到,获得积分10
8秒前
周周发布了新的文献求助10
8秒前
urman发布了新的文献求助10
9秒前
甜甜的莞完成签到,获得积分10
9秒前
余余余余完成签到,获得积分20
9秒前
ljpsjdsm发布了新的文献求助10
10秒前
脑洞疼应助BK2008采纳,获得10
10秒前
和谐雁荷完成签到 ,获得积分10
10秒前
田様应助迷失浪人采纳,获得10
11秒前
12秒前
Laity完成签到,获得积分10
12秒前
victor完成签到,获得积分10
14秒前
15秒前
笑嘻嘻发布了新的文献求助10
16秒前
16秒前
--发布了新的文献求助10
19秒前
WNL完成签到,获得积分10
19秒前
20秒前
Wangying发布了新的文献求助20
20秒前
20秒前
21秒前
Rita完成签到,获得积分10
23秒前
x421发布了新的文献求助10
23秒前
八杯水发布了新的文献求助10
24秒前
25秒前
善学以致用应助David采纳,获得10
25秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159701
求助须知:如何正确求助?哪些是违规求助? 2810654
关于积分的说明 7888962
捐赠科研通 2469692
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012