Data-driven temperature estimation of non-contact solids using deep-learning reduced-order models

外推法 计算机科学 人工神经网络 投影(关系代数) 人工智能 数据挖掘 机器学习 算法 数学 数学分析
作者
Genghui Jiang,Ming Kang,Zhenwei Cai,Yingzheng Liu,Weizhe Wang
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:185: 122383-122383 被引量:9
标识
DOI:10.1016/j.ijheatmasstransfer.2021.122383
摘要

A data-driven deep-learning reduced-order models (DL-ROMs) framework to accurately evaluate the temperature field of non-contact solids without available sensors is proposed in this paper. The framework combines a neural network (NN) and model reduction. The NN is trained and the sub-ROMs of internal non-contact solids are established based on a shared sample library in the offline stage. Specifically, proper orthogonal decomposition (POD) is used for data compression and feature extraction for a high-fidelity physical solution of the sample library, and then a lower-dimension approximation system is constructed on the projection space spanned by a set of reduced orthogonal basis. An NN is introduced to implicitly map inlet conditions or temperature data measured by external sensors to the feature coefficients of the established sub-ROMs regardless of the complex flow heat transfer mechanism. Prediction under a new inlet condition or monitoring based on measured temperatures can be conducted using this framework in the online stage. Six groups testing in-sample and out-of-sample cases are used to verify the feasibility and robustness of the framework. The results show that the proposed framework can effectively predict and monitor the temperature field of internal non-contact solids for in-sample cases. The framework is also suitable for extrapolation cases that exceed 10% of the sample range. This framework is used to estimate the temperature field of non-contact solids in complex industrial problems to further develop parametric design, real-time prediction, optimal control strategies, and online monitoring and maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gggja发布了新的文献求助10
刚刚
牟翎完成签到,获得积分10
1秒前
小一完成签到,获得积分10
1秒前
Rubby应助睡觉大王采纳,获得10
2秒前
Jasper应助dadadaxia采纳,获得10
2秒前
清风徐来完成签到,获得积分10
2秒前
zp发布了新的文献求助10
2秒前
Owen应助balabala采纳,获得10
3秒前
大地完成签到,获得积分10
4秒前
4秒前
Ava应助MoreScholarship采纳,获得10
5秒前
茶博士完成签到,获得积分10
6秒前
研友_VZG7GZ应助橙子采纳,获得10
6秒前
8秒前
充电宝应助somnus_fu采纳,获得10
8秒前
爆米花应助123采纳,获得10
8秒前
9秒前
乐乐应助heart采纳,获得10
9秒前
英姑应助ip07in13采纳,获得10
9秒前
邹鹏发布了新的文献求助10
9秒前
IIIllIIIllI完成签到,获得积分10
9秒前
xcccc完成签到,获得积分10
9秒前
xiaoblue完成签到,获得积分10
10秒前
10秒前
杰ing完成签到,获得积分10
10秒前
青鸾完成签到,获得积分20
11秒前
11秒前
愉快的犀牛完成签到 ,获得积分10
11秒前
艮爚完成签到 ,获得积分10
11秒前
13秒前
善学以致用应助eterny采纳,获得10
13秒前
13秒前
13秒前
Lucas应助Bao采纳,获得10
13秒前
NexusExplorer应助无辜的秀采纳,获得10
14秒前
果实发布了新的文献求助10
14秒前
oncoma发布了新的文献求助10
15秒前
奕奕完成签到,获得积分10
15秒前
ren完成签到,获得积分10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960721
求助须知:如何正确求助?哪些是违规求助? 3506928
关于积分的说明 11132948
捐赠科研通 3239182
什么是DOI,文献DOI怎么找? 1790081
邀请新用户注册赠送积分活动 872130
科研通“疑难数据库(出版商)”最低求助积分说明 803128