作者
Nicholas J. Turner,Thomas Macrina,J Bae,Runzhe Yang,Alyssa N. Wilson,Casey M Schneider-Mizell,Ki-Suk Lee,Ran Lu,Jingpeng Wu,Agnes L. Bodor,Adam Bleckert,Derrick Brittain,Emmanouil Froudarakis,Sven Dorkenwald,Forrest Collman,Nico Kemnitz,Dodam Ih,William Silversmith,Jonathan Zung,Aleksandar Zlateski,Ignacio Tartavull,Szi-chieh Yu,Sergiy Popovych,Shang Mu,William Wong,Chris E. Jordan,Manuel Castro,JoAnn Buchanan,Daniel J. Bumbarger,Marc Takeno,Russel Torres,Gayathri Mahalingam,Leila Elabbady,Yan Li,Erick Cobos,Pengcheng Zhou,Shelby Suckow,Lynne Becker,Liam Paninski,Franck Polleux,Jacob Reimer,Andreas S. Tolias,R. Clay Reid,Nuno Marques da Costa,H. Sebastian Seung
摘要
Summary
We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from ∼250 × 140 × 90 μm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.