A Novel CT-Based Radiomics Features Analysis for Identification and Severity Staging of COPD

慢性阻塞性肺病 无线电技术 医学 支持向量机 逻辑回归 特征选择 接收机工作特性 人工智能 阶段(地层学) 放射科 内科学 计算机科学 生物 古生物学
作者
LI Zong-li,Ligong Liu,Zuoqing Zhang,Xuhong Yang,Xuanyi Li,Yanli Gao,Kewu Huang
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (5): 663-673 被引量:24
标识
DOI:10.1016/j.acra.2022.01.004
摘要

Rationale and Objectives

To evaluate the role of radiomics based on Chest Computed Tomography (CT) in the identification and severity staging of chronic obstructive pulmonary disease (COPD).

Materials and Methods

This retrospective analysis included 322 participants (249 COPD patients and 73 control subjects). In total, 1395 chest CT-based radiomics features were extracted from each participant's CT images. Three feature selection methods, including variance threshold, Select K Best method, and least absolute shrinkage and selection operator (LASSO), and two classification methods, including support vector machine (SVM) and logistic regression (LR), were used as identification and severity classification of COPD. Performance was compared by AUC, accuracy, sensitivity, specificity, precision, and F1-score.

Results

38 and 10 features were selected to construct radiomics models to detect and stage COPD, respectively. For COPD identification, SVM classifier achieved AUCs of 0.992 and 0.970, while LR classifier achieved AUCs of 0.993 and 0.972 in the training set and test set, respectively. For the severity staging of COPD, the mentioned two machine learning classifiers can better differentiate less severity (GOLD1 + GOLD2) group from greater severity (GOLD3 + GOLD4) group. The AUCs of SVM and LR is 0.907 and 0.903 in the training set, and that of 0.799 and 0.797 in the test set.

Conclusion

The present study showed that the novel radiomics approach based on chest CT images that can be used for COPD identification and severity classification, and the constructed radiomics model demonstrated acceptable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程大大大教授完成签到,获得积分10
1秒前
Erice完成签到,获得积分10
2秒前
zzz完成签到 ,获得积分10
3秒前
咖啡豆应助震动的千萍采纳,获得20
5秒前
8秒前
华仔应助ffff采纳,获得10
9秒前
9秒前
11秒前
认真勒完成签到 ,获得积分10
11秒前
12秒前
想个网名真困难完成签到,获得积分10
13秒前
麻团儿发布了新的文献求助10
13秒前
甜甜刚完成签到,获得积分10
14秒前
Erice发布了新的文献求助10
14秒前
15秒前
hhhm发布了新的文献求助10
17秒前
19秒前
充电宝应助xiguan采纳,获得200
20秒前
雪白砖家发布了新的文献求助10
21秒前
23秒前
to高坚果发布了新的文献求助10
23秒前
24秒前
霅霅完成签到,获得积分10
25秒前
27秒前
27秒前
28秒前
雪白砖家完成签到,获得积分10
28秒前
科研通AI2S应助liyuqian采纳,获得10
28秒前
薰硝壤应助苏苏采纳,获得10
30秒前
30秒前
不配.应助Heisenberg采纳,获得10
30秒前
科研小菜鸡关注了科研通微信公众号
32秒前
linn发布了新的文献求助10
32秒前
共享精神应助superspace采纳,获得30
33秒前
小心完成签到 ,获得积分10
35秒前
superxiao应助科研通管家采纳,获得10
36秒前
所所应助科研通管家采纳,获得10
36秒前
桐桐应助科研通管家采纳,获得10
36秒前
shinysparrow应助科研通管家采纳,获得200
36秒前
wanci应助科研通管家采纳,获得10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141210
求助须知:如何正确求助?哪些是违规求助? 2792192
关于积分的说明 7801885
捐赠科研通 2448394
什么是DOI,文献DOI怎么找? 1302521
科研通“疑难数据库(出版商)”最低求助积分说明 626638
版权声明 601237