Artificial Intelligence-Based Total Mesorectal Excision Plane Navigation in Laparoscopic Colorectal Surgery

全直肠系膜切除术 医学 结直肠外科 外科 腹腔镜手术 结直肠癌 人工智能 腹腔镜检查 腹部外科 癌症 计算机科学 内科学
作者
Takahiro Igaki,Daichi Kitaguchi,Shigehiro Kojima,Hiro Hasegawa,Nobuyoshi Takeshita,Kensaku Mori,Yusuke Kinugasa,Masaaki Ito
出处
期刊:Diseases of The Colon & Rectum [Lippincott Williams & Wilkins]
卷期号:65 (5): e329-e333 被引量:33
标识
DOI:10.1097/dcr.0000000000002393
摘要

Total mesorectal excision is the standard surgical procedure for rectal cancer because it is associated with low local recurrence rates. To the best of our knowledge, this is the first study to use an image-guided navigation system with total mesorectal excision.The impact of innovation is the development of a deep learning-based image-guided navigation system for areolar tissue in the total mesorectal excision plane. Such a system might be helpful to surgeons because areolar tissue can be used as a landmark for the appropriate dissection plane.This was a single-center experimental feasibility study involving 32 randomly selected patients who had undergone laparoscopic left-sided colorectal resection between 2015 and 2019. Deep learning-based semantic segmentation of areolar tissue in the total mesorectal excision plane was performed. Intraoperative images capturing the total mesorectal excision scene extracted from left colorectal laparoscopic resection videos were used as training data for the deep learning model. Six hundred annotation images were created from 32 videos, with 528 images in the training and 72 images in the test data sets. The experimental feasibility study was conducted at the Department of Colorectal Surgery, National Cancer Center Hospital East, Chiba, Japan. Dice coefficient was used to evaluate semantic segmentation accuracy for areolar tissue.The developed semantic segmentation model helped locate and highlight the areolar tissue area in the total mesorectal excision plane. The accuracy and generalization performance of deep learning models depend mainly on the quantity and quality of the training data. This study had only 600 images; thus, more images for training are necessary to improve the recognition accuracy.We successfully developed a total mesorectal excision plane image-guided navigation system based on an areolar tissue segmentation approach with high accuracy. This may aid surgeons in recognizing the total mesorectal excision plane for dissection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsy发布了新的文献求助10
刚刚
1秒前
秦王绕柱走完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
Qianbaor68应助夏天采纳,获得10
3秒前
只只完成签到 ,获得积分10
3秒前
Hah完成签到,获得积分10
3秒前
木木完成签到,获得积分10
4秒前
涛tao完成签到,获得积分10
4秒前
英俊的铭应助haonanchen采纳,获得10
5秒前
小王给小王的求助进行了留言
5秒前
香蕉觅云应助Hannah采纳,获得10
5秒前
郭菱香发布了新的文献求助10
5秒前
5秒前
科研通AI5应助know采纳,获得200
6秒前
April完成签到 ,获得积分10
7秒前
7秒前
大吴克发布了新的文献求助10
7秒前
ZJJ静发布了新的文献求助20
7秒前
7秒前
科研小白发布了新的文献求助10
8秒前
有人喜欢蓝完成签到,获得积分10
8秒前
Owen应助JFP采纳,获得10
8秒前
星辰大海应助朴素的雪莲采纳,获得10
8秒前
momobobi发布了新的文献求助10
8秒前
9秒前
瓦斯发布了新的文献求助20
9秒前
9秒前
9秒前
10秒前
bkagyin应助冰糖采纳,获得10
10秒前
lulu8809完成签到,获得积分10
10秒前
山中蠢驴发布了新的文献求助10
10秒前
joycheung发布了新的文献求助10
11秒前
风趣尔琴发布了新的文献求助10
12秒前
李健的小迷弟应助hjygzv采纳,获得10
12秒前
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734777
求助须知:如何正确求助?哪些是违规求助? 3278715
关于积分的说明 10010876
捐赠科研通 2995383
什么是DOI,文献DOI怎么找? 1643405
邀请新用户注册赠送积分活动 781153
科研通“疑难数据库(出版商)”最低求助积分说明 749285