光致发光
发色团
量子点
光化学
光电子学
吸收(声学)
化学
纳米晶
电子转移
材料科学
纳米技术
复合材料
作者
Xingao Zhang,Felix N. Castellano
标识
DOI:10.1021/acs.jpclett.2c00582
摘要
Thermally activated delayed photoluminescence (TADPL) generated from organic chromophore-functionalized quantum dots (QDs) is potentially beneficial for persistent light generation, QD-based PL sensors, and photochemical synthesis. While previous research demonstrated that naphthoic acid-functionalized InP QDs can be employed as low-toxicity, blue-emissive TADPL materials, the electron trap states inherent in these nanocrystals inhibited the observation of TADPL emerging from the higher-lying bright states. Here, we address this challenge by employing the heterocyclic aromatic compound 8-quinolinecarboxylic acid (QCA), whose triplet energy is strategically positioned to bypass the electron trap states in InP QDs. Transient absorption and photoluminescence spectroscopies revealed the generation of bright-state TADPL from QCA-functionalized InP QDs resulting from a nearly quantitative Dexter-like triplet-triplet energy transfer (TTET) from photoexcited InP QDs to surface-anchored QCA chromophores followed by reverse TTET from these bound molecules to the InP QDs. This modification resulted in a 119-fold increase in the average PL intensity decay time with respect to the as-synthesized InP QDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI