Magnetic graphene molecularly imprinted polypyrrole polymer (MGO@MIPy) for electrochemical sensing of malondialdehyde in serum samples

微分脉冲伏安法 石墨烯 聚吡咯 纳米复合材料 分子印迹聚合物 材料科学 纳米材料 分析物 磁性纳米粒子 循环伏安法 检出限 纳米颗粒 电化学 电极 纳米技术 聚合物 色谱法 化学 选择性 聚合 有机化学 催化作用 物理化学 复合材料
作者
Pablo Montoro-Leal,Mohammed Zougagh,Antonio Sánchez‐Ruiz,Ángel Ríos,E. Vereda Alonso
出处
期刊:Microchemical Journal [Elsevier]
卷期号:178: 107377-107377 被引量:8
标识
DOI:10.1016/j.microc.2022.107377
摘要

A modified screen-printed carbon electrode (SPCE) has been designed and fabricated for the determination of malondialdehyde (MDA), an important biomarker of oxidative stress. Magnetic graphene oxide (MGO) was synthesized and coated by a molecularly imprinted polypyrrole (MIPy) for the preparation of a novel hybrid nanomaterial ([email protected]). The nanocomposite has been characterized using different spectroscopic and imaging techniques. The coupling of MIPy with MGO allows the exploitation of the magnetic properties of the material for separation, preconcentration and manipulation of analyte which is selectively captured onto the MIPy surface of the nanocomposite. Besides, the derivatization of MDA with diaminonaphtalene (DAN) was carried out, resulting in a more electroactive molecule (MDA-DAN). MDA-DAN was used as template in the synthesis of MIPy. SPCEs were employed to monitor the differential pulse voltammetry (DVP) levels of the material, which is related to the amount of the captured analyte. Under optimum conditions, the nanocomposite-based sensing system has proved to be suitable for the monitoring of MDA, presenting a wide linear range (0.01–100 µM), high sensitivity (experimental LOQ = 0.01 µM) and precision (RSD = 4%). For validation purposes, three chicken serum samples were analysed by external calibration, obtaining recoveries values close to 100% for all the spiked tests. Finally, the developed electrochemical sensor demonstrated to be adequate for bioanalytical application, presenting an excellent analytical performance for the routine monitoring of MDA in serum samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
乐乐应助carat采纳,获得10
3秒前
3秒前
4秒前
跳跃斌完成签到,获得积分10
4秒前
兴奋觅海完成签到,获得积分10
4秒前
科研废物完成签到 ,获得积分10
4秒前
fang发布了新的文献求助10
5秒前
落寞丹萱发布了新的文献求助10
5秒前
皮不可发布了新的文献求助10
6秒前
个性向珊完成签到,获得积分10
6秒前
白蓝红发布了新的文献求助10
7秒前
毛豆应助无私啤酒采纳,获得10
7秒前
9秒前
我是老大应助重要半兰采纳,获得10
9秒前
碳酸芙兰完成签到,获得积分10
10秒前
皮不可完成签到,获得积分10
14秒前
华仔应助ze采纳,获得10
14秒前
15秒前
曾经的雨梅完成签到 ,获得积分20
16秒前
小红完成签到,获得积分10
18秒前
小白一号应助笑笑采纳,获得10
20秒前
22秒前
Lucas应助科研八戒采纳,获得10
22秒前
meetland完成签到 ,获得积分10
24秒前
shidandan完成签到 ,获得积分10
27秒前
Owen应助枯叶蝶采纳,获得10
27秒前
ze发布了新的文献求助10
27秒前
斯文败类应助一颗梨采纳,获得10
27秒前
28秒前
WerWu完成签到,获得积分10
30秒前
33秒前
沈海完成签到,获得积分10
34秒前
35秒前
stars完成签到 ,获得积分10
36秒前
韩小花发布了新的文献求助30
36秒前
37秒前
毛豆应助个性向珊采纳,获得10
38秒前
小鱼鱼Fish发布了新的文献求助20
39秒前
conny应助能干的雪瑶采纳,获得10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312191
求助须知:如何正确求助?哪些是违规求助? 2944810
关于积分的说明 8521543
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115