三阴性乳腺癌
基因敲除
癌症研究
基因沉默
细胞生长
流式细胞术
化学
细胞凋亡
小RNA
细胞
乳腺癌
分子生物学
生物
癌症
基因
生物化学
遗传学
作者
Hongyang Li,Hailin Yin,Yao Yan
标识
DOI:10.1177/03936155221086599
摘要
Triple-negative breast cancer (TNBC) is a subtype of breast cancers with a high recurrence and mortality. The important factors promoting the TNBC process have not been fully identified. In this research, the role of a TNBC-related circular RNA (circRNA), circ_0041732, was revealed in TNBC cell tumor properties.The expression levels of circ_0041732, microRNA-149-5p (miR-149-5p) and fibroblast growth factor 5 (FGF5) were detected by quantitative real-time polymerase chain reaction. The protein expression was determined by Western blot analysis or immunohistochemistry assay. Cell proliferation was detected by cell counting kit-8 and cell colony formation assays. Cell apoptosis was analyzed by flow cytometry and caspase-3 activity assays. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. Cell angiogenic capacity was investigated by a tube formation assay. The targeting relationship between miR-149-5p and circ_0041732 or FGF5 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of circ_0041732 knockdown on tumor formation were determined by an in vivo assay.Circ_0041732 and FGF5 expression were significantly upregulated, whereas miR-149-5p was downregulated in TNBC tissues and cells compared with normal breast tissues and cells, respectively. Circ_0041732 silencing inhibited TNBC cell proliferation, migration, invasion, and tube formation, but induced apoptosis. Additionally, circ_0041732 regulated TNBC cell tumor properties by binding to miR-149-5p. MiR-149-5p also modulated TNBC cell tumor properties by targeting FGF5. Furthermore, circ_0041732 knockdown hindered tumor formation in vivo.Circ_0041732 silencing suppressed TNBC cell tumor properties by decreasing FGF5 expression through miR-149-5p. This finding demonstrated that circ_0041732 had the potential as a therapeutic target for TNBC.
科研通智能强力驱动
Strongly Powered by AbleSci AI