Template-based Identification of Malignant and Non-malignant Skin-lesions to Minimize Biopsy Load Using Saturation Counts (HSV space) and Absolute Dark Area parameters: Experiments on ISIC Images

减法 活检 RGB颜色模型 像素 病变 HSL和HSV色彩空间 人工智能 计算机科学 模式识别(心理学) 医学 放射科 病理 数学 算术 病毒 病毒学
作者
Rai Sachindra Prasad,Vikas Prasad
标识
DOI:10.1109/iconat53423.2022.9726047
摘要

Malignant skin lesion is the deadliest skin disease resulting in huge loss of lives in Europe, Australia and USA. Early detection of malignant lesions can save lives. It is highly challenging to differentiate between malignant and non-malignant skin lesions. Many non-invasive techniques have been proposed but none has been accepted in clinical practice. Consequently, biopsy remains the only gold standard for diagnosis of malignant lesions. The objective of this study which uses two master templates (MT) of dermoscopic images for identification, an improvement over the recently reported subtraction technique using only a single MT, is to propose a non- invasive technique to minimize biopsy load to an appreciable extent. This study proposes selection of two MTs, one a known 100% malignant (M) lesion, and the other a known nearly 100% benign (B) lesion. For identification of test lesions either belonging to $M$ or B category, each test image from the publicly available ISIC archive is subtracted from each of the two MTs and the resulting pixels (RGB) data on each subtraction are converted into HSV space. Scatter plot showing Saturation (S) data counts against pixels locations below and above a trial-and-error-based threshold of 0.35, decides the B or M category of test lesions according to a rule defined for identification. The proposed method introduces, for the first time ever, use of double MTs subtraction technique, which amounts to the filter action. The proposed subtraction method has sound mathematical and logical base. On a preliminary trial over fifty images from publicly available ISIC archive, an overall high accuracy of 94% was achieved which promises clinical applications to minimize biopsy load to a great extent. The proposed method is easy to implement by non-experts and takes only fifteen minutes on average for diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木鱼完成签到 ,获得积分20
刚刚
微笑笑阳应助一二采纳,获得10
1秒前
1秒前
庞天兴发布了新的文献求助10
1秒前
2秒前
yunnn发布了新的文献求助10
4秒前
在水一方应助Sor采纳,获得10
7秒前
orixero应助852采纳,获得10
8秒前
小鱼骑单车应助研友_Zb1vln采纳,获得10
9秒前
丘比特应助豆子采纳,获得30
9秒前
9秒前
gyyzj完成签到 ,获得积分10
12秒前
狗狗完成签到 ,获得积分10
12秒前
芝麻糊应助科研通管家采纳,获得10
12秒前
lierking应助科研通管家采纳,获得30
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
wawuuuuu应助科研通管家采纳,获得10
12秒前
14秒前
庞天兴发布了新的文献求助10
15秒前
Sor完成签到,获得积分10
15秒前
研友_Zb1vln完成签到,获得积分10
16秒前
Sor发布了新的文献求助10
17秒前
17秒前
19秒前
xiaoru完成签到,获得积分10
20秒前
小蘑菇应助journey采纳,获得30
21秒前
英姑应助yunnn采纳,获得30
21秒前
cyyy完成签到,获得积分10
21秒前
Hello应助sluck采纳,获得10
23秒前
24秒前
25秒前
28秒前
28秒前
29秒前
30秒前
buding发布了新的文献求助10
31秒前
32秒前
fun发布了新的文献求助10
33秒前
虚幻的一一完成签到,获得积分20
33秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469956
求助须知:如何正确求助?哪些是违规求助? 3063190
关于积分的说明 9081720
捐赠科研通 2753389
什么是DOI,文献DOI怎么找? 1510860
邀请新用户注册赠送积分活动 698134
科研通“疑难数据库(出版商)”最低求助积分说明 698056