A Fast Markov Decision Process-Based Algorithm for Collision Avoidance in Urban Air Mobility

避碰 空中交通管制 计算机科学 马尔可夫过程 碰撞 分离(统计) 马尔可夫决策过程 防撞系统 成对比较 过程(计算) 出租车 算法 模拟 工程类 人工智能 数学 机器学习 航空航天工程 运输工程 统计 计算机安全 操作系统
作者
Josh Bertram,Peng Wei,Joseph Zambreno
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 15420-15433 被引量:15
标识
DOI:10.1109/tits.2022.3140724
摘要

Multiple aircraft collision avoidance is a challenging problem due to a stochastic environment and uncertainty in the intent of other aircraft. Traditionally a layered approach to collision avoidance has been employed using a centralized air traffic control system, established rules of the road, separation assurance, and last minute pairwise collision avoidance. With the advent of Urban Air Mobility (air taxis), the expected increase in traffic density in urban environments, short time scales, and small distances between aircraft favor decentralized decision making on-board the aircraft. In this paper, we present a Markov Decision Process (MDP) based method, named FastMDP, which can solve a certain subclass of MDPs quickly, and demonstrate using the algorithm online to safely maintain separation and avoid collisions with multiple aircraft (1-on-n) while remaining computationally efficient. We compare the FastMDP algorithm's performance against two online collision avoidance algorithms that have been shown to be both efficient and scale to large numbers of aircraft: Optimal Reciprocal Collision Avoidance (ORCA) and Monte Carlo Tree Search (MCTS). Our simulation results show that under the assumption that aircraft do not have perfect knowledge of other aircraft intent FastMDP outperforms ORCA and MCTS in collision avoidance behavior in terms of loss of separation and near mid-air collisions while being more computationally efficient. We further show that in our simulation FastMDP behaves nearly as well as MCTS with perfect knowledge of other aircraft intent. Our results show that FastMDP is a promising algorithm for collision avoidance that is also computationally efficient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花凉发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
2秒前
嘿嘿完成签到,获得积分10
2秒前
2秒前
无极微光应助123456采纳,获得20
3秒前
Rowena完成签到,获得积分10
3秒前
4秒前
霜序十六完成签到,获得积分10
5秒前
欧石楠完成签到 ,获得积分10
8秒前
8秒前
爆米花应助好运连连采纳,获得10
8秒前
Darcy完成签到,获得积分10
9秒前
yeah发布了新的文献求助10
10秒前
谢某某102097完成签到,获得积分10
10秒前
11秒前
11秒前
dingyuhong发布了新的文献求助10
11秒前
11秒前
不安的米老鼠完成签到,获得积分10
12秒前
灵巧问筠完成签到,获得积分10
14秒前
16秒前
17秒前
xia发布了新的文献求助10
18秒前
壮观若南发布了新的文献求助10
18秒前
monica发布了新的文献求助10
19秒前
20秒前
好运连连发布了新的文献求助10
21秒前
浮浮世世发布了新的文献求助10
22秒前
23秒前
wanci应助蓝莓妮儿采纳,获得10
24秒前
潘2333完成签到,获得积分20
24秒前
大方的航空完成签到,获得积分10
25秒前
25秒前
苏silence完成签到,获得积分10
25秒前
浮游应助春风不语采纳,获得10
27秒前
米诺发布了新的文献求助10
28秒前
在水一方应助XingZiBa采纳,获得10
28秒前
28秒前
yeah发布了新的文献求助30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571900
求助须知:如何正确求助?哪些是违规求助? 4657057
关于积分的说明 14719219
捐赠科研通 4597883
什么是DOI,文献DOI怎么找? 2523461
邀请新用户注册赠送积分活动 1494260
关于科研通互助平台的介绍 1464374