A Fast Markov Decision Process-Based Algorithm for Collision Avoidance in Urban Air Mobility

避碰 空中交通管制 计算机科学 马尔可夫过程 碰撞 分离(统计) 马尔可夫决策过程 防撞系统 成对比较 过程(计算) 出租车 算法 模拟 工程类 人工智能 数学 机器学习 航空航天工程 运输工程 计算机安全 操作系统 统计
作者
Josh Bertram,Peng Wei,Joseph Zambreno
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 15420-15433 被引量:15
标识
DOI:10.1109/tits.2022.3140724
摘要

Multiple aircraft collision avoidance is a challenging problem due to a stochastic environment and uncertainty in the intent of other aircraft. Traditionally a layered approach to collision avoidance has been employed using a centralized air traffic control system, established rules of the road, separation assurance, and last minute pairwise collision avoidance. With the advent of Urban Air Mobility (air taxis), the expected increase in traffic density in urban environments, short time scales, and small distances between aircraft favor decentralized decision making on-board the aircraft. In this paper, we present a Markov Decision Process (MDP) based method, named FastMDP, which can solve a certain subclass of MDPs quickly, and demonstrate using the algorithm online to safely maintain separation and avoid collisions with multiple aircraft (1-on-n) while remaining computationally efficient. We compare the FastMDP algorithm's performance against two online collision avoidance algorithms that have been shown to be both efficient and scale to large numbers of aircraft: Optimal Reciprocal Collision Avoidance (ORCA) and Monte Carlo Tree Search (MCTS). Our simulation results show that under the assumption that aircraft do not have perfect knowledge of other aircraft intent FastMDP outperforms ORCA and MCTS in collision avoidance behavior in terms of loss of separation and near mid-air collisions while being more computationally efficient. We further show that in our simulation FastMDP behaves nearly as well as MCTS with perfect knowledge of other aircraft intent. Our results show that FastMDP is a promising algorithm for collision avoidance that is also computationally efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shenlaizhibi发布了新的文献求助10
2秒前
2秒前
阿悦发布了新的文献求助10
3秒前
阿土完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助30
5秒前
Xu发布了新的文献求助10
5秒前
5秒前
8秒前
Czt完成签到,获得积分10
9秒前
9秒前
小透明发布了新的文献求助10
9秒前
Xu完成签到,获得积分10
11秒前
11秒前
12秒前
soso完成签到,获得积分10
12秒前
12秒前
李爱国应助神雕001采纳,获得10
12秒前
14秒前
14秒前
小雨完成签到,获得积分10
14秒前
14秒前
搜集达人应助HH采纳,获得10
15秒前
soso发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
Owen应助兔孖采纳,获得10
15秒前
16秒前
chenyun完成签到,获得积分10
16秒前
ccc关闭了ccc文献求助
16秒前
Czt发布了新的文献求助10
16秒前
wanci应助知性的奎采纳,获得10
17秒前
17秒前
17秒前
个性严青发布了新的文献求助10
18秒前
19秒前
ke发布了新的文献求助10
19秒前
赘婿应助冯俊驰采纳,获得10
20秒前
袁江堰完成签到 ,获得积分10
20秒前
Crisp完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950964
求助须知:如何正确求助?哪些是违规求助? 4213785
关于积分的说明 13105631
捐赠科研通 3995556
什么是DOI,文献DOI怎么找? 2186991
邀请新用户注册赠送积分活动 1202197
关于科研通互助平台的介绍 1115436