Bayesian unanchored additive models for component network meta‐analysis

计算机科学 符号 组分(热力学) 贝叶斯概率 贝叶斯网络 统计模型 加性模型 对比度(视觉) 计量经济学 机器学习 数据挖掘 人工智能 数学 物理 算术 热力学
作者
Augustine Wigle,Audrey Béliveau
出处
期刊:Statistics in Medicine [Wiley]
卷期号:41 (22): 4444-4466 被引量:2
标识
DOI:10.1002/sim.9520
摘要

Component network meta-analysis (CNMA) models are an extension of standard network meta-analysis (NMA) models which account for the use of multicomponent treatments in the network. This article contributes innovatively to several statistical aspects of CNMA. First, by introducing a unified notation, we establish that currently available methods differ in the way they assume additivity, an important distinction that has been overlooked so far in the literature. In particular, one model uses a more restrictive form of additivity than the other which we term an anchored and unanchored model, respectively. We show that an anchored model can provide a poor fit to the data if it is misspecified. Second, given that Bayesian models are often preferred by practitioners, we develop two novel unanchored Bayesian CNMA models presented under the unified notation. An extensive simulation study examining bias, coverage probabilities, and treatment rankings confirms the favorable performance of the novel models. This is the first simulation study to compare the statistical properties of CNMA models in the literature. Finally, the use of our novel models is demonstrated on a real dataset, and the results of CNMA models on the dataset are compared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
Zengyuan完成签到,获得积分10
1秒前
1秒前
闫素肃发布了新的文献求助10
1秒前
yh发布了新的文献求助10
1秒前
Jared应助邹帅采纳,获得10
1秒前
科研通AI6应助发嗲的芷采纳,获得10
2秒前
在水一方应助俏皮的冬云采纳,获得20
2秒前
zzz完成签到,获得积分10
2秒前
李健应助叶远望采纳,获得10
3秒前
3秒前
3秒前
超级幼旋应助超级向薇采纳,获得10
3秒前
姚盈盈发布了新的文献求助10
4秒前
Li2862完成签到,获得积分10
4秒前
Raul完成签到,获得积分10
4秒前
5秒前
思源应助wnan_07采纳,获得10
5秒前
汤飞柏发布了新的文献求助10
5秒前
星星发布了新的文献求助20
5秒前
科研通AI6应助怡然的蚂蚁采纳,获得30
5秒前
科研通AI6应助有点小卑鄙采纳,获得10
5秒前
sinlar发布了新的文献求助10
5秒前
某某某发布了新的文献求助10
6秒前
xin6688发布了新的文献求助10
6秒前
6秒前
6秒前
NexusExplorer应助dewo采纳,获得10
6秒前
七七完成签到 ,获得积分10
6秒前
今后应助yh采纳,获得10
7秒前
7秒前
7秒前
十一完成签到,获得积分10
8秒前
8秒前
8秒前
tangyy1205发布了新的文献求助10
9秒前
Motanka完成签到,获得积分10
9秒前
自然的剑封完成签到,获得积分10
10秒前
ding应助段辉采纳,获得10
10秒前
仄言发布了新的文献求助10
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582358
求助须知:如何正确求助?哪些是违规求助? 4666421
关于积分的说明 14762778
捐赠科研通 4608475
什么是DOI,文献DOI怎么找? 2528699
邀请新用户注册赠送积分活动 1498050
关于科研通互助平台的介绍 1466736