Large-scale group decision making model based on social network analysis: Trust relationship-based conflict detection and elimination

过程(计算) 计算机科学 比例(比率) 构造(python库) 群体决策 群体冲突 选择(遗传算法) 决策 社交网络(社会语言学) 学位(音乐) 非线性系统 运筹学 数据挖掘 数学优化 人工智能 心理学 数学 社会心理学 经济 运营管理 物理 操作系统 万维网 程序设计语言 社会化媒体 量子力学 采购 声学
作者
Bingsheng Liu,Qi Zhou,Ruxi Ding,Iván Palomares,Francisco Herrera
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:275 (2): 737-754 被引量:281
标识
DOI:10.1016/j.ejor.2018.11.075
摘要

The paper proposes a Trust Relationship-based Conflict Detection and Elimination decision making (TR-CDE) model, applicable for Large-scale Group Decision Making (LSGDM) problems in social network contexts. The TR-CDE model comprises three processes: a trust propagation process; a conflict detection and elimination process; and a selection process. In the first process, we propose a new relationship strength-based trust propagation operator, which allows to construct a complete social network by considering the impact of relationship strength on propagation efficiency. In the second process, we define the concept of conflict degree and quantify the collective conflict degree by combining the assessment information and trust relationships among decision makers in the large group. We use social network analysis and a nonlinear optimization model to detect and eliminate conflicts among decision makers. By finding the optimal solution to the proposed nonlinear optimization model, we promote the modification of the assessments from the DM who exhibits the highest degree of conflict in the process, as well as guaranteeing that a sufficient reduction of the group conflict degree is achieved. In the third and last process, we propose a new selection method for LSGDM that determines decision makers’ weights based on their conflict degree. A numerical example and a practical scenario are implemented to show the feasibility of the proposed TR-CDE model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yly发布了新的文献求助10
刚刚
yeahCZY应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
领导范儿应助l1844852731采纳,获得10
1秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
ccm应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
唐泽雪穗应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
汤圆发布了新的文献求助10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
Orange应助pcg采纳,获得10
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
whm发布了新的文献求助10
3秒前
3秒前
小二郎应助相安采纳,获得10
3秒前
阿鱼完成签到 ,获得积分20
3秒前
4秒前
知返完成签到,获得积分10
4秒前
5秒前
starry发布了新的文献求助10
7秒前
yumiao发布了新的文献求助10
8秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208238
求助须知:如何正确求助?哪些是违规求助? 4385876
关于积分的说明 13658770
捐赠科研通 4244690
什么是DOI,文献DOI怎么找? 2328900
邀请新用户注册赠送积分活动 1326691
关于科研通互助平台的介绍 1278875