Unraveling Structure Sensitivity in CO2 Electroreduction to Near-Unity CO on Silver Nanocubes

过电位 催化作用 电化学 纳米结构 密度泛函理论 材料科学 纳米技术 氧化还原 纳米晶 选择性 活动站点 化学 化学工程 无机化学 物理化学 电极 计算化学 有机化学 工程类
作者
Subiao Liu,Chong Sun,Jing Xiao,Jing‐Li Luo
出处
期刊:ACS Catalysis 卷期号:10 (5): 3158-3163 被引量:100
标识
DOI:10.1021/acscatal.9b03883
摘要

The renewable-energy-powered electrochemical CO2 reduction reaction (CO2RR) provides an attractive strategy to simultaneously address the energy storage and environmental issues through the synthesis of carbon-neutral fuels. This study unravels structure sensitivity of ultrasmall Ag nanocubes with lengths below 25 and 70 nm (L25- and L70-Ag-NCs) enclosed completely by the (100) facet toward an efficient CO2RR to CO. The ultrasmall L25-Ag-NCs deliver a remarkably larger current density, a significantly higher Faraday efficiency (FE) of near-unity, and a comparably higher energy efficiency of 64.0% as well as a better stability of ∼18 h as compared to L70-Ag-NCs, Ag nanoparticles, and bulk Ag. More importantly, CO generation initiates at an ultralow overpotential of 146 mV, accompanied with a remarkably high onset CO FE of 59.6%, further demonstrating the excellence of L25-Ag-NCs for highly active and selective CO2RR. Density functional theory calculations, the percentages of various catalytically active sites, and how the architecture of NCs affecting the active sites as well as the partial density of states were analyzed; the results reveal that the essential origins credited for the enhanced catalytic activity and near-unity CO selectivity over L25-Ag-NCs at lowered η originate from the particular nanostructure, where energetically favorable active sites toward CO2RR are maximally introduced through accurately synthesizing the specific nanostructure enclosed by a certain facet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柏小霜完成签到 ,获得积分10
1秒前
MJQ发布了新的文献求助30
1秒前
1秒前
励志梦完成签到,获得积分10
2秒前
领导范儿应助su采纳,获得10
3秒前
Ll发布了新的文献求助10
3秒前
pi发布了新的文献求助10
3秒前
尔晚完成签到,获得积分10
3秒前
长情绿凝发布了新的文献求助10
3秒前
完美世界应助Huaiman采纳,获得10
3秒前
JamesPei应助zhaomr采纳,获得10
3秒前
调研昵称发布了新的文献求助10
3秒前
3秒前
雨中的诗柳完成签到,获得积分10
3秒前
酷波er应助小鼠拯救者采纳,获得10
3秒前
丘比特应助动听导师采纳,获得10
3秒前
4秒前
4秒前
Krystal完成签到,获得积分10
4秒前
逝水无痕完成签到,获得积分10
4秒前
lkc发布了新的文献求助10
6秒前
6秒前
又村完成签到 ,获得积分10
6秒前
jiojio完成签到,获得积分10
7秒前
蔡小葵发布了新的文献求助10
7秒前
Acc完成签到,获得积分10
7秒前
7秒前
yasan发布了新的文献求助10
7秒前
小怀完成签到 ,获得积分10
8秒前
8秒前
Mia完成签到 ,获得积分20
8秒前
友好灵萱完成签到,获得积分10
8秒前
8秒前
ah完成签到,获得积分10
9秒前
科研CY发布了新的文献求助10
9秒前
假行僧完成签到,获得积分10
9秒前
刘芸芸发布了新的文献求助10
9秒前
赖建琛完成签到 ,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762