作者
Alexander A. Aksenov,Ivan Laponogov,Zheng Zhang,Sophie Doran,Ilaria Belluomo,Dennis A. Veselkov,Wout Bittremieux,Louis‐Félix Nothias,Mélissa Nothias-Esposito,Katherine N. Maloney,Biswapriya B. Misra,Alexey V. Melnik,Aleksandr Smirnov,Xiuxia Du,Kenneth Lyons Jones,Kathleen Dorrestein,Morgan Panitchpakdi,Madeleine Ernst,Justin J. J. van der Hooft,Mabel González,Chiara Carazzone,Adolfo Amézquita,Chris Callewaert,James T. Morton,Robert A. Quinn,Amina Bouslimani,Andrea G. Albarracín Orio,Daniel Petras,Andrea M. Smania,Sneha Couvillion,Meagan Burnet,Carrie Nicora,Erika Zink,Thomas Metz,Viatcheslav B. Artaev,Elizabeth M. Humston-Fulmer,Rachel Gregor,Michaël M. Meijler,Itzhak Mizrahi,Stav Eyal,Brooke Anderson,Rachel J. Dutton,Raphaël Lugan,Pauline Le Boulch,Yann Guitton,Stéphanie Prévost,Audrey Poirier,Gaud Dervilly,Bruno Le Bizec,Aaron Fait,Noga Sikron Persi,Chao Song,Kelem Gashu,Roxana Coras,Mónica Gumá,Julia Manasson,Jose U. Scher,Dinesh Kumar Barupal,Saleh Alseekh,Alisdair R. Fernie,Reza Mirnezami,Vasilis Vasiliou,Robin Schmid,Р. С. Борисов,Л. Н. Куликова,Rob Knight,Mingxun Wang,George B. Hanna,Pieter C. Dorrestein,Kirill Veselkov
摘要
We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC-MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples.