Deep Learning for Detecting Cerebral Aneurysms with CT Angiography

医学 接收机工作特性 放射科 血管造影 动脉瘤 刀切重采样 脑血管造影 人工智能 计算机科学 内科学 数学 统计 估计员
作者
Jiehua Yang,Mingfei Xie,Canpei Hu,Osamah Alwalid,Yongchao Xu,Jia Liu,Teng Jin,Changde Li,Dandan Tu,Xiaowu Liu,Changzheng Zhang,Cixing Li,Xi Long
出处
期刊:Radiology [Radiological Society of North America]
卷期号:298 (1): 155-163 被引量:76
标识
DOI:10.1148/radiol.2020192154
摘要

Background Cerebral aneurysm detection is a challenging task. Deep learning may become a supportive tool for more accurate interpretation. Purpose To develop a highly sensitive deep learning–based algorithm that assists in the detection of cerebral aneurysms on CT angiography images. Materials and Methods Head CT angiography images were retrospectively retrieved from two hospital databases acquired across four different scanners between January 2015 and June 2019. The data were divided into training and validation sets; 400 additional independent CT angiograms acquired between July and December 2019 were used for external validation. A deep learning–based algorithm was constructed and assessed. Both internal and external validation were performed. Jackknife alternative free-response receiver operating characteristic analysis was performed. Results A total of 1068 patients (mean age, 57 years ± 11 [standard deviation]; 660 women) were evaluated for a total of 1068 CT angiograms encompassing 1337 cerebral aneurysms. Of these, 534 CT angiograms (688 aneurysms) were assigned to the training set, and the remaining 534 CT angiograms (649 aneurysms) constituted the validation set. The sensitivity of the proposed algorithm for detecting cerebral aneurysms was 97.5% (633 of 649; 95% CI: 96.0, 98.6). Moreover, eight new aneurysms that had been overlooked in the initial reports were detected (1.2%, eight of 649). With the aid of the algorithm, the overall performance of radiologists in terms of area under the weighted alternative free-response receiver operating characteristic curve was higher by 0.01 (95% CI: 0.00, 0.03). Conclusion The proposed deep learning algorithm assisted radiologists in detecting cerebral aneurysms on CT angiography images, resulting in a higher detection rate. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kallmes and Erickson in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌酱发布了新的文献求助10
刚刚
2秒前
2秒前
上官若男应助whl采纳,获得10
3秒前
咕噜完成签到 ,获得积分10
4秒前
我爱科研完成签到 ,获得积分20
7秒前
liu完成签到,获得积分10
8秒前
8秒前
8秒前
打打应助小橘子采纳,获得10
9秒前
9秒前
Jieh发布了新的文献求助10
9秒前
微笑的千凡完成签到 ,获得积分10
10秒前
adi发布了新的文献求助10
12秒前
12秒前
129600完成签到,获得积分10
13秒前
YoursSummer发布了新的文献求助10
14秒前
李奚完成签到,获得积分10
14秒前
15秒前
张又蓝发布了新的文献求助10
15秒前
科研小白发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
XoXo完成签到,获得积分10
19秒前
长隆发布了新的文献求助10
20秒前
脑洞疼应助科研小白采纳,获得10
21秒前
22秒前
大模型应助金滢采纳,获得10
23秒前
23秒前
23秒前
24秒前
26秒前
小橘子发布了新的文献求助10
27秒前
wusuowei发布了新的文献求助10
27秒前
28秒前
淡定从凝发布了新的文献求助10
28秒前
捌贰陆柒完成签到 ,获得积分10
29秒前
小小肖发布了新的文献求助10
29秒前
研友_kng1r8完成签到,获得积分10
30秒前
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182