亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Multi-Objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions

帕累托原理 多目标优化 稳健性(进化) 数学优化 最优化问题 公制(单位) 稳健优化 数学 计算机科学 工程类 运营管理 生物化学 基因 化学
作者
Tingting Xia,Mian Li
出处
期刊:Journal of Computing and Information Science in Engineering [ASM International]
卷期号:21 (4) 被引量:3
标识
DOI:10.1115/1.4049996
摘要

Abstract Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design. To find robust Pareto fronts, multi-objective robust optimization (MORO) methods with inner–outer optimization structures usually have high computational complexity, which is a critical issue. Generally, in design problems, robust Pareto solutions lie somewhere closer to nominal Pareto points compared with randomly initialized points. The searching process for robust solutions could be more efficient if starting from nominal Pareto points. We propose a new method sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points where MOOPs with uncertainties are solved in two stages. The deterministic optimization problem and robustness metric optimization are solved in the first stage, where nominal Pareto solutions and the robust-most solutions are identified, respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and robust-most points. The proposed SARPF method can reduce a significant amount of computational time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values, which can reduce computational efforts further. The global solvers, NSGA-II for multi-objective cases and genetic algorithm (GA) for single-objective cases, are used in corresponding optimization processes. Three examples with the comparison with results from the previous method are presented to demonstrate the applicability and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Kiki完成签到 ,获得积分10
3秒前
6秒前
6秒前
6秒前
程负暄完成签到 ,获得积分10
7秒前
ylh发布了新的文献求助10
7秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
11秒前
ylh完成签到,获得积分10
13秒前
JamesPei应助高大的冬萱采纳,获得30
15秒前
传奇3应助高大的冬萱采纳,获得30
15秒前
zyq1996发布了新的文献求助10
20秒前
然463完成签到 ,获得积分10
22秒前
科研通AI2S应助舒心小海豚采纳,获得10
23秒前
卷心菜的菜完成签到,获得积分10
24秒前
wanci应助高大的冬萱采纳,获得10
26秒前
爆米花应助缥缈无色采纳,获得10
26秒前
科研通AI5应助Judy采纳,获得10
32秒前
37秒前
39秒前
zyq1996完成签到,获得积分10
40秒前
Ffpcjwcx发布了新的文献求助10
43秒前
852应助Ffpcjwcx采纳,获得10
47秒前
QiongYin_123完成签到 ,获得积分10
47秒前
50秒前
不发nothing发布了新的文献求助10
53秒前
53秒前
菠萝完成签到,获得积分10
56秒前
58秒前
58秒前
ZHAOSHI完成签到 ,获得积分10
59秒前
大气亦巧发布了新的文献求助10
1分钟前
追寻元菱发布了新的文献求助10
1分钟前
高大的冬萱完成签到,获得积分10
1分钟前
大气亦巧完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063599
求助须知:如何正确求助?哪些是违规求助? 4287064
关于积分的说明 13358389
捐赠科研通 4105153
什么是DOI,文献DOI怎么找? 2247853
邀请新用户注册赠送积分活动 1253415
关于科研通互助平台的介绍 1184523