重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

An Efficient Multi-Objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions

帕累托原理 多目标优化 稳健性(进化) 数学优化 最优化问题 公制(单位) 稳健优化 数学 计算机科学 工程类 生物化学 化学 运营管理 基因
作者
Tingting Xia,Mian Li
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:21 (4) 被引量:3
标识
DOI:10.1115/1.4049996
摘要

Abstract Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design. To find robust Pareto fronts, multi-objective robust optimization (MORO) methods with inner–outer optimization structures usually have high computational complexity, which is a critical issue. Generally, in design problems, robust Pareto solutions lie somewhere closer to nominal Pareto points compared with randomly initialized points. The searching process for robust solutions could be more efficient if starting from nominal Pareto points. We propose a new method sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points where MOOPs with uncertainties are solved in two stages. The deterministic optimization problem and robustness metric optimization are solved in the first stage, where nominal Pareto solutions and the robust-most solutions are identified, respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and robust-most points. The proposed SARPF method can reduce a significant amount of computational time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values, which can reduce computational efforts further. The global solvers, NSGA-II for multi-objective cases and genetic algorithm (GA) for single-objective cases, are used in corresponding optimization processes. Three examples with the comparison with results from the previous method are presented to demonstrate the applicability and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无极微光应助啥也不会采纳,获得20
1秒前
传奇3应助如如采纳,获得10
1秒前
2秒前
3秒前
3秒前
科研通AI6应助DF采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
鲤鱼安露发布了新的文献求助10
5秒前
5秒前
小恐龙在外太空睡觉完成签到 ,获得积分10
5秒前
6秒前
7秒前
zerro发布了新的文献求助10
7秒前
8秒前
8秒前
李思洋完成签到 ,获得积分10
9秒前
YQQ发布了新的文献求助10
9秒前
敢敢完成签到,获得积分10
9秒前
9秒前
yz发布了新的文献求助10
9秒前
所所应助萝卜采纳,获得10
10秒前
10秒前
研友_ZG45a8发布了新的文献求助10
10秒前
朴素的乐枫关注了科研通微信公众号
10秒前
LALA完成签到,获得积分10
12秒前
所所应助风清扬采纳,获得10
12秒前
12秒前
双休完成签到,获得积分10
13秒前
lizz发布了新的文献求助10
13秒前
13秒前
14秒前
是风动完成签到 ,获得积分10
14秒前
深情安青应助滕滕采纳,获得10
14秒前
15秒前
王昭发布了新的文献求助10
15秒前
15秒前
上官若男应助忱麓裔采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467818
求助须知:如何正确求助?哪些是违规求助? 4571406
关于积分的说明 14330055
捐赠科研通 4497984
什么是DOI,文献DOI怎么找? 2464215
邀请新用户注册赠送积分活动 1452991
关于科研通互助平台的介绍 1427699