An Efficient Multi-Objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions

帕累托原理 多目标优化 稳健性(进化) 数学优化 最优化问题 公制(单位) 稳健优化 数学 计算机科学 工程类 运营管理 生物化学 基因 化学
作者
Tingting Xia,Mian Li
出处
期刊:Journal of Computing and Information Science in Engineering [ASM International]
卷期号:21 (4) 被引量:3
标识
DOI:10.1115/1.4049996
摘要

Abstract Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design. To find robust Pareto fronts, multi-objective robust optimization (MORO) methods with inner–outer optimization structures usually have high computational complexity, which is a critical issue. Generally, in design problems, robust Pareto solutions lie somewhere closer to nominal Pareto points compared with randomly initialized points. The searching process for robust solutions could be more efficient if starting from nominal Pareto points. We propose a new method sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points where MOOPs with uncertainties are solved in two stages. The deterministic optimization problem and robustness metric optimization are solved in the first stage, where nominal Pareto solutions and the robust-most solutions are identified, respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and robust-most points. The proposed SARPF method can reduce a significant amount of computational time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values, which can reduce computational efforts further. The global solvers, NSGA-II for multi-objective cases and genetic algorithm (GA) for single-objective cases, are used in corresponding optimization processes. Three examples with the comparison with results from the previous method are presented to demonstrate the applicability and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssk完成签到,获得积分10
刚刚
zhouleibio完成签到,获得积分10
1秒前
冯乌完成签到 ,获得积分10
2秒前
L7.完成签到,获得积分10
3秒前
3秒前
陈好好完成签到 ,获得积分10
3秒前
西溪浅浅完成签到 ,获得积分10
3秒前
Karvs完成签到,获得积分10
5秒前
自然的夏兰完成签到 ,获得积分10
5秒前
阿巴阿巴完成签到,获得积分10
6秒前
顺心紫南完成签到,获得积分10
6秒前
7秒前
8秒前
量子星尘发布了新的文献求助50
8秒前
9秒前
AllRightReserved完成签到 ,获得积分10
9秒前
www完成签到,获得积分20
9秒前
ark861023完成签到,获得积分10
11秒前
YY完成签到 ,获得积分10
11秒前
科研通AI5应助kidult采纳,获得10
12秒前
12秒前
玛卡巴卡完成签到,获得积分10
12秒前
寒冷无色完成签到,获得积分10
12秒前
浅辰完成签到,获得积分10
14秒前
15秒前
16秒前
1752795896完成签到,获得积分10
16秒前
鱿鱼炒黄瓜完成签到,获得积分10
16秒前
柔弱的老三完成签到 ,获得积分10
16秒前
Star完成签到 ,获得积分10
16秒前
GongSyi完成签到 ,获得积分10
16秒前
Almond完成签到,获得积分10
17秒前
郝天鑫完成签到,获得积分10
19秒前
JoaquinH完成签到,获得积分10
19秒前
析渊完成签到,获得积分10
19秒前
xiaowang0710完成签到,获得积分10
19秒前
20秒前
张小度ever完成签到 ,获得积分10
20秒前
哒哒完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613581
求助须知:如何正确求助?哪些是违规求助? 4018192
关于积分的说明 12437368
捐赠科研通 3700791
什么是DOI,文献DOI怎么找? 2040931
邀请新用户注册赠送积分活动 1073664
科研通“疑难数据库(出版商)”最低求助积分说明 957328