An Efficient Multi-Objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions

帕累托原理 多目标优化 稳健性(进化) 数学优化 最优化问题 公制(单位) 稳健优化 数学 计算机科学 工程类 生物化学 化学 运营管理 基因
作者
Tingting Xia,Mian Li
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:21 (4) 被引量:3
标识
DOI:10.1115/1.4049996
摘要

Abstract Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design. To find robust Pareto fronts, multi-objective robust optimization (MORO) methods with inner–outer optimization structures usually have high computational complexity, which is a critical issue. Generally, in design problems, robust Pareto solutions lie somewhere closer to nominal Pareto points compared with randomly initialized points. The searching process for robust solutions could be more efficient if starting from nominal Pareto points. We propose a new method sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points where MOOPs with uncertainties are solved in two stages. The deterministic optimization problem and robustness metric optimization are solved in the first stage, where nominal Pareto solutions and the robust-most solutions are identified, respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and robust-most points. The proposed SARPF method can reduce a significant amount of computational time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values, which can reduce computational efforts further. The global solvers, NSGA-II for multi-objective cases and genetic algorithm (GA) for single-objective cases, are used in corresponding optimization processes. Three examples with the comparison with results from the previous method are presented to demonstrate the applicability and efficiency of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助小范采纳,获得10
刚刚
赘婿应助hyPang采纳,获得10
刚刚
1秒前
渔夫完成签到,获得积分10
2秒前
3秒前
3秒前
不安的大米完成签到,获得积分10
3秒前
晚风发布了新的文献求助10
3秒前
4秒前
阿盖发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
所所应助钟昊采纳,获得10
5秒前
5秒前
leetaisan完成签到,获得积分10
6秒前
7秒前
8秒前
田様应助兴奋烤鸡采纳,获得10
8秒前
8秒前
打打应助huangyi采纳,获得10
8秒前
8秒前
槐夏发布了新的文献求助10
9秒前
华仔应助山野随千里采纳,获得10
9秒前
结实的栾完成签到,获得积分10
9秒前
Ava应助z104采纳,获得10
10秒前
上官若男应助syx采纳,获得20
10秒前
小范发布了新的文献求助10
11秒前
12秒前
13秒前
贰壹发布了新的文献求助30
14秒前
14秒前
pax发布了新的文献求助10
14秒前
15秒前
希望天下0贩的0应助乐天采纳,获得10
16秒前
wuyoucaoxin完成签到,获得积分10
16秒前
小赵发布了新的文献求助10
16秒前
完美世界应助啦啦啦啦采纳,获得10
17秒前
17秒前
科研通AI6应助struggle采纳,获得10
18秒前
Hanoi347应助假面绅士采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698799
关于积分的说明 14899078
捐赠科研通 4737011
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511067
关于科研通互助平台的介绍 1473605