亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Multi-Objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions

帕累托原理 多目标优化 稳健性(进化) 数学优化 最优化问题 公制(单位) 稳健优化 数学 计算机科学 工程类 生物化学 化学 运营管理 基因
作者
Tingting Xia,Mian Li
出处
期刊:Journal of Computing and Information Science in Engineering [ASM International]
卷期号:21 (4) 被引量:3
标识
DOI:10.1115/1.4049996
摘要

Abstract Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design. To find robust Pareto fronts, multi-objective robust optimization (MORO) methods with inner–outer optimization structures usually have high computational complexity, which is a critical issue. Generally, in design problems, robust Pareto solutions lie somewhere closer to nominal Pareto points compared with randomly initialized points. The searching process for robust solutions could be more efficient if starting from nominal Pareto points. We propose a new method sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points where MOOPs with uncertainties are solved in two stages. The deterministic optimization problem and robustness metric optimization are solved in the first stage, where nominal Pareto solutions and the robust-most solutions are identified, respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and robust-most points. The proposed SARPF method can reduce a significant amount of computational time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values, which can reduce computational efforts further. The global solvers, NSGA-II for multi-objective cases and genetic algorithm (GA) for single-objective cases, are used in corresponding optimization processes. Three examples with the comparison with results from the previous method are presented to demonstrate the applicability and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
34秒前
43秒前
朴素海亦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Akim应助冷酷跳跳糖采纳,获得10
1分钟前
1分钟前
繁星完成签到 ,获得积分10
1分钟前
从来都不会放弃zr完成签到,获得积分10
1分钟前
2分钟前
2分钟前
ys完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
HK完成签到 ,获得积分10
2分钟前
冷酷跳跳糖完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Criminology34应助Double采纳,获得10
4分钟前
4分钟前
科目三应助laa采纳,获得10
4分钟前
辣手摧花526完成签到,获得积分20
4分钟前
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
丘比特应助ResKeZhang采纳,获得10
4分钟前
5分钟前
Yimin发布了新的文献求助80
5分钟前
Double完成签到,获得积分10
5分钟前
5分钟前
Double发布了新的文献求助10
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Yimin完成签到,获得积分20
6分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346630
求助须知:如何正确求助?哪些是违规求助? 4481113
关于积分的说明 13947295
捐赠科研通 4379029
什么是DOI,文献DOI怎么找? 2406149
邀请新用户注册赠送积分活动 1398713
关于科研通互助平台的介绍 1371523