An Efficient Multi-Objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions

帕累托原理 多目标优化 稳健性(进化) 数学优化 最优化问题 公制(单位) 稳健优化 数学 计算机科学 工程类 生物化学 化学 运营管理 基因
作者
Tingting Xia,Mian Li
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:21 (4) 被引量:3
标识
DOI:10.1115/1.4049996
摘要

Abstract Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design. To find robust Pareto fronts, multi-objective robust optimization (MORO) methods with inner–outer optimization structures usually have high computational complexity, which is a critical issue. Generally, in design problems, robust Pareto solutions lie somewhere closer to nominal Pareto points compared with randomly initialized points. The searching process for robust solutions could be more efficient if starting from nominal Pareto points. We propose a new method sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points where MOOPs with uncertainties are solved in two stages. The deterministic optimization problem and robustness metric optimization are solved in the first stage, where nominal Pareto solutions and the robust-most solutions are identified, respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and robust-most points. The proposed SARPF method can reduce a significant amount of computational time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values, which can reduce computational efforts further. The global solvers, NSGA-II for multi-objective cases and genetic algorithm (GA) for single-objective cases, are used in corresponding optimization processes. Three examples with the comparison with results from the previous method are presented to demonstrate the applicability and efficiency of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyx发布了新的文献求助20
1秒前
1秒前
科研通AI6应助Cting采纳,获得10
2秒前
2秒前
2秒前
3秒前
王大力发布了新的文献求助10
4秒前
宁宁要去看文献了完成签到,获得积分10
4秒前
丘比特应助拾柒采纳,获得10
4秒前
4秒前
Awei发布了新的文献求助10
5秒前
小二郎应助wy采纳,获得10
5秒前
李爱国应助YY采纳,获得10
5秒前
星辰大海应助舒服的士萧采纳,获得10
5秒前
ning完成签到 ,获得积分10
5秒前
无花果应助花飞飞凡采纳,获得10
5秒前
久燊完成签到,获得积分20
6秒前
8秒前
tengfei完成签到,获得积分10
8秒前
8秒前
DDDD发布了新的文献求助10
10秒前
陆程文完成签到,获得积分10
10秒前
10秒前
霞俊杰完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
Awei完成签到,获得积分10
11秒前
天天快乐应助牛贝贝采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
BowieHuang应助Ymir采纳,获得40
13秒前
13秒前
NexusExplorer应助1101592875采纳,获得10
13秒前
付研琪发布了新的文献求助10
13秒前
花灯王子完成签到,获得积分10
14秒前
Lqian_Yu完成签到 ,获得积分10
14秒前
小葛发布了新的文献求助10
14秒前
Kevin发布了新的文献求助20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836