已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Efficient Multi-Objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions

帕累托原理 多目标优化 稳健性(进化) 数学优化 最优化问题 公制(单位) 稳健优化 数学 计算机科学 工程类 生物化学 化学 运营管理 基因
作者
Tingting Xia,Mian Li
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:21 (4) 被引量:3
标识
DOI:10.1115/1.4049996
摘要

Abstract Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design. To find robust Pareto fronts, multi-objective robust optimization (MORO) methods with inner–outer optimization structures usually have high computational complexity, which is a critical issue. Generally, in design problems, robust Pareto solutions lie somewhere closer to nominal Pareto points compared with randomly initialized points. The searching process for robust solutions could be more efficient if starting from nominal Pareto points. We propose a new method sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points where MOOPs with uncertainties are solved in two stages. The deterministic optimization problem and robustness metric optimization are solved in the first stage, where nominal Pareto solutions and the robust-most solutions are identified, respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and robust-most points. The proposed SARPF method can reduce a significant amount of computational time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values, which can reduce computational efforts further. The global solvers, NSGA-II for multi-objective cases and genetic algorithm (GA) for single-objective cases, are used in corresponding optimization processes. Three examples with the comparison with results from the previous method are presented to demonstrate the applicability and efficiency of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YL发布了新的文献求助10
1秒前
香蕉觅云应助zwq采纳,获得10
2秒前
活力海云发布了新的文献求助10
2秒前
萌宠完成签到,获得积分10
4秒前
zhong关注了科研通微信公众号
5秒前
田様应助南小槿采纳,获得10
5秒前
从容的小霸王完成签到,获得积分20
6秒前
8秒前
Owen应助AAAA采纳,获得10
9秒前
热心的香水关注了科研通微信公众号
10秒前
11秒前
hotdx发布了新的文献求助10
12秒前
12秒前
华仔应助呆呆采纳,获得10
14秒前
14秒前
漂亮水绿发布了新的文献求助10
17秒前
郭柳含给郭柳含的求助进行了留言
18秒前
21秒前
21秒前
皮卡丘完成签到 ,获得积分0
21秒前
哈哈悦完成签到,获得积分10
22秒前
23秒前
23秒前
今天努力学习了吗完成签到,获得积分10
24秒前
24秒前
犹豫囧发布了新的文献求助30
24秒前
24秒前
24秒前
CodeCraft应助Youth采纳,获得10
26秒前
白糖发布了新的文献求助10
27秒前
zhong发布了新的文献求助10
27秒前
上官若男应助忧虑的代容采纳,获得10
28秒前
29秒前
lhs完成签到,获得积分20
31秒前
31秒前
情怀应助顺心人达采纳,获得10
32秒前
zzzdx发布了新的文献求助10
35秒前
36秒前
田雨弘完成签到 ,获得积分10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779009
求助须知:如何正确求助?哪些是违规求助? 5645254
关于积分的说明 15451020
捐赠科研通 4910481
什么是DOI,文献DOI怎么找? 2642724
邀请新用户注册赠送积分活动 1590412
关于科研通互助平台的介绍 1544770