亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Multi-Objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions

帕累托原理 多目标优化 稳健性(进化) 数学优化 最优化问题 公制(单位) 稳健优化 数学 计算机科学 工程类 生物化学 化学 运营管理 基因
作者
Tingting Xia,Mian Li
出处
期刊:Journal of Computing and Information Science in Engineering [ASM International]
卷期号:21 (4) 被引量:3
标识
DOI:10.1115/1.4049996
摘要

Abstract Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design. To find robust Pareto fronts, multi-objective robust optimization (MORO) methods with inner–outer optimization structures usually have high computational complexity, which is a critical issue. Generally, in design problems, robust Pareto solutions lie somewhere closer to nominal Pareto points compared with randomly initialized points. The searching process for robust solutions could be more efficient if starting from nominal Pareto points. We propose a new method sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points where MOOPs with uncertainties are solved in two stages. The deterministic optimization problem and robustness metric optimization are solved in the first stage, where nominal Pareto solutions and the robust-most solutions are identified, respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and robust-most points. The proposed SARPF method can reduce a significant amount of computational time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values, which can reduce computational efforts further. The global solvers, NSGA-II for multi-objective cases and genetic algorithm (GA) for single-objective cases, are used in corresponding optimization processes. Three examples with the comparison with results from the previous method are presented to demonstrate the applicability and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
气945发布了新的文献求助10
6秒前
6秒前
taster完成签到,获得积分10
10秒前
44秒前
甜甜纸飞机完成签到 ,获得积分10
47秒前
57秒前
甜甜的紫菜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
matrixu完成签到,获得积分10
1分钟前
无花果应助hyc采纳,获得10
1分钟前
科研通AI6应助有趣的银采纳,获得10
1分钟前
星辰大海应助有趣的银采纳,获得10
1分钟前
1分钟前
1分钟前
caca完成签到,获得积分0
1分钟前
思源应助凉水采纳,获得10
1分钟前
花呗发布了新的文献求助10
2分钟前
2分钟前
pucca完成签到 ,获得积分10
2分钟前
凉水发布了新的文献求助10
2分钟前
凉水完成签到,获得积分10
2分钟前
花呗完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
单薄的蓝天完成签到,获得积分10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
Tiamo发布了新的文献求助10
2分钟前
SCI完成签到 ,获得积分10
3分钟前
乐乐应助科研圈外人采纳,获得10
3分钟前
开心的瘦子完成签到,获得积分10
3分钟前
CipherSage应助cc采纳,获得10
3分钟前
4分钟前
4分钟前
cc完成签到,获得积分10
4分钟前
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232636
求助须知:如何正确求助?哪些是违规求助? 4401913
关于积分的说明 13699440
捐赠科研通 4268297
什么是DOI,文献DOI怎么找? 2342513
邀请新用户注册赠送积分活动 1339514
关于科研通互助平台的介绍 1296180