Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS)

小分子 化学 变构调节 蛋白质水解 蛋白质组 胰蛋白酶 蛋白酶 生物化学 溶解 蛋白质结构 质谱法 生物物理学 生物 色谱法
作者
Monika Pepelnjak,Natalie de Souza,Paola Picotti
出处
期刊:Trends in Biochemical Sciences [Elsevier]
卷期号:45 (10): 919-920 被引量:39
标识
DOI:10.1016/j.tibs.2020.05.006
摘要

Protein–small molecule interactions control many cellular processes, such as allosteric regulation of enzyme activity. One method to study protein–small molecule interactions in a complex sample is limited proteolysis–mass spectrometry (LiP-MS). In this approach, a small molecule is added to a complex sample such as a cell lysate, which is then briefly incubated with a nonspecific protease. Since binding of a small molecule can locally alter the protease accessibility of its target proteins, this yields condition-specific cleavage products. The size of the fragments is then reduced by secondary digestion with trypsin and peptide abundances are measured by MS, yielding structural fingerprints for all detected proteins. Comparing structural fingerprints plus and minus the small molecule identifies target proteins and enables pinpointing of binding sites. Use of a concentration gradient of the small molecule can further distinguish between proteins with different relative binding affinities. Peptide-level resolution: Alterations in structural fingerprints can be identified with a resolution of ~12 amino acids, suggesting small-molecule-binding sites. Enables the generation of mechanistic hypotheses: Detects and discriminates among different types of protein–small molecule interactions, including allosteric, enzyme–substrate, enzyme–product, and drug–target interactions. In situ analysis: Structural changes are probed in a native-like environment such as a cell lysate. Proteome-wide scale: Structural fingerprints are simultaneously measured for all MS-detectable proteins in a sample. Broad applicability: The method is not limited to detecting protein–small molecule interactions but can be applied to identify different types of protein structural changes upon a range of perturbations, such as temperature or growth medium. Requires high sequence coverage of the target protein: To identify a binding site, the peptide at the binding interface must be detected by MS. Thus, the method is biased towards medium/high-abundance proteins. Conformational changes hamper binding site identification: If the small molecule induces a structural change beyond the binding region, the interaction is detected but the binding site cannot be accurately pinpointed. Binding may not alter protease susceptibility: Target identification is based on the principle that small-molecule binding alters the protease accessibility of the target protein. If this does not occur, the target cannot be identified. P.P. is funded by a Personalized Health and Related Technologies (PHRT) grant (PHRT-506), a Sinergia grant from the Swiss National Science Foundation (SNSF grant CRSII5_177195), and an ERC consolidator grant (866004).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的白猫完成签到,获得积分20
1秒前
2秒前
Muzz发布了新的文献求助10
3秒前
XMH发布了新的文献求助10
4秒前
隐形曼青应助优美紫槐采纳,获得10
4秒前
科目三应助Lendar采纳,获得10
4秒前
彭于晏应助过时的棒棒糖采纳,获得100
5秒前
qhtwld发布了新的文献求助10
9秒前
11秒前
14秒前
lalala完成签到,获得积分10
15秒前
ddd完成签到,获得积分10
15秒前
16秒前
无花果应助1526918042采纳,获得10
16秒前
16秒前
笋笋完成签到,获得积分10
17秒前
Owen应助南枝焙雪采纳,获得10
17秒前
踌躇前半生完成签到,获得积分10
17秒前
psylan完成签到,获得积分10
17秒前
Magic麦发布了新的文献求助10
18秒前
科研闲人完成签到,获得积分10
18秒前
19秒前
Harlotte发布了新的文献求助10
19秒前
能干冰露完成签到,获得积分10
19秒前
山月鹿完成签到,获得积分10
20秒前
鸠摩智发布了新的文献求助10
20秒前
李健的小迷弟应助Lay采纳,获得10
20秒前
xiaominl发布了新的文献求助80
21秒前
科研牛马完成签到,获得积分10
22秒前
彭于晏应助动听锦程采纳,获得10
22秒前
XMH完成签到,获得积分10
24秒前
文静的绿真完成签到,获得积分10
24秒前
笋笋发布了新的文献求助10
24秒前
丰富的雪糕完成签到,获得积分10
25秒前
slj完成签到,获得积分10
25秒前
25秒前
我是老大应助ayu采纳,获得10
27秒前
一清完成签到,获得积分20
27秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232