Computer-aided diagnosis of liver lesions using CT images: A systematic review

计算机科学 计算机辅助诊断 放射科 人工智能 医学
作者
P. Vaidehi Nayantara,Surekha Kamath,K. Manjunath,Rajagopal Kadavigere
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:127: 104035-104035 被引量:43
标识
DOI:10.1016/j.compbiomed.2020.104035
摘要

Medical image processing has a strong footprint in radio diagnosis for the detection of diseases from the images. Several computer-aided systems were researched in the recent past to assist the radiologist in diagnosing liver diseases and reducing the interpretation time. The aim of this paper is to provide an overview of the state-of-the-art techniques in computer-assisted diagnosis systems to predict benign and malignant lesions using computed tomography images.The research articles published between 1998 and 2020 obtained from various standard databases were considered for preparing the review. The research papers include both conventional as well as deep learning-based systems for liver lesion diagnosis. The paper initially discusses the various hepatic lesions that are identifiable on computed tomography images, then the computer-aided diagnosis systems and their workflow. The conventional and deep learning-based systems are presented in stages wherein the various methods used for preprocessing, liver and lesion segmentation, radiological feature extraction and classification are discussed.The review suggests the scope for future, work as efficient and effective segmentation methods that work well with diverse images have not been developed. Furthermore, unsupervised and semi-supervised deep learning models were not investigated for liver disease diagnosis in the reviewed papers. Other areas to be explored include image fusion and inclusion of essential clinical features along with the radiological features for better classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yzm发布了新的文献求助10
1秒前
qt完成签到,获得积分10
1秒前
玛卡巴卡发布了新的文献求助10
1秒前
1秒前
周周南完成签到 ,获得积分10
3秒前
4秒前
夏虫语冰完成签到,获得积分10
5秒前
Jro完成签到,获得积分10
5秒前
华仔应助文静外套采纳,获得10
6秒前
7秒前
英俊的铭应助月下荷花采纳,获得10
8秒前
十月发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
111发布了新的文献求助10
10秒前
英俊的铭应助仙乐采纳,获得10
11秒前
开心榴莲大王完成签到 ,获得积分10
11秒前
13秒前
酷波er应助SMULJL采纳,获得10
14秒前
16秒前
18秒前
钉钉完成签到 ,获得积分10
19秒前
轻松雁蓉发布了新的文献求助10
19秒前
迷人的天抒应助General采纳,获得10
21秒前
英俊的铭应助hyr采纳,获得10
21秒前
所所应助疯狂的麦咭采纳,获得100
21秒前
科研通AI5应助古月采纳,获得30
22秒前
Friday发布了新的文献求助10
25秒前
科研通AI2S应助HSX采纳,获得10
28秒前
Que完成签到,获得积分10
30秒前
WANG发布了新的文献求助10
31秒前
玛卡巴卡完成签到,获得积分10
32秒前
diaoyulao完成签到,获得积分10
32秒前
32秒前
33秒前
35秒前
我是灭宝发布了新的文献求助10
35秒前
hyr发布了新的文献求助10
36秒前
38秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980440
求助须知:如何正确求助?哪些是违规求助? 3524384
关于积分的说明 11221298
捐赠科研通 3261829
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879476
科研通“疑难数据库(出版商)”最低求助积分说明 807283