计算机科学
计算机辅助诊断
放射科
人工智能
医学
作者
P. Vaidehi Nayantara,Surekha Kamath,K. Manjunath,Rajagopal Kadavigere
标识
DOI:10.1016/j.compbiomed.2020.104035
摘要
Medical image processing has a strong footprint in radio diagnosis for the detection of diseases from the images. Several computer-aided systems were researched in the recent past to assist the radiologist in diagnosing liver diseases and reducing the interpretation time. The aim of this paper is to provide an overview of the state-of-the-art techniques in computer-assisted diagnosis systems to predict benign and malignant lesions using computed tomography images.The research articles published between 1998 and 2020 obtained from various standard databases were considered for preparing the review. The research papers include both conventional as well as deep learning-based systems for liver lesion diagnosis. The paper initially discusses the various hepatic lesions that are identifiable on computed tomography images, then the computer-aided diagnosis systems and their workflow. The conventional and deep learning-based systems are presented in stages wherein the various methods used for preprocessing, liver and lesion segmentation, radiological feature extraction and classification are discussed.The review suggests the scope for future, work as efficient and effective segmentation methods that work well with diverse images have not been developed. Furthermore, unsupervised and semi-supervised deep learning models were not investigated for liver disease diagnosis in the reviewed papers. Other areas to be explored include image fusion and inclusion of essential clinical features along with the radiological features for better classification accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI