Computer-aided diagnosis of liver lesions using CT images: A systematic review

计算机科学 计算机辅助诊断 放射科 人工智能 医学
作者
P. Vaidehi Nayantara,Surekha Kamath,K. Manjunath,Rajagopal Kadavigere
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:127: 104035-104035 被引量:43
标识
DOI:10.1016/j.compbiomed.2020.104035
摘要

Medical image processing has a strong footprint in radio diagnosis for the detection of diseases from the images. Several computer-aided systems were researched in the recent past to assist the radiologist in diagnosing liver diseases and reducing the interpretation time. The aim of this paper is to provide an overview of the state-of-the-art techniques in computer-assisted diagnosis systems to predict benign and malignant lesions using computed tomography images.The research articles published between 1998 and 2020 obtained from various standard databases were considered for preparing the review. The research papers include both conventional as well as deep learning-based systems for liver lesion diagnosis. The paper initially discusses the various hepatic lesions that are identifiable on computed tomography images, then the computer-aided diagnosis systems and their workflow. The conventional and deep learning-based systems are presented in stages wherein the various methods used for preprocessing, liver and lesion segmentation, radiological feature extraction and classification are discussed.The review suggests the scope for future, work as efficient and effective segmentation methods that work well with diverse images have not been developed. Furthermore, unsupervised and semi-supervised deep learning models were not investigated for liver disease diagnosis in the reviewed papers. Other areas to be explored include image fusion and inclusion of essential clinical features along with the radiological features for better classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
八戒爱吃人参果完成签到,获得积分10
1秒前
Tina完成签到 ,获得积分10
2秒前
hl268发布了新的文献求助10
3秒前
孟严青完成签到,获得积分10
3秒前
3秒前
曾梦发布了新的文献求助10
3秒前
3秒前
siqilinwillbephd完成签到,获得积分10
4秒前
贪玩的谷芹完成签到 ,获得积分10
4秒前
zhao完成签到,获得积分10
5秒前
5秒前
迷人囧完成签到 ,获得积分10
6秒前
内向靖巧发布了新的文献求助10
6秒前
研友_VZG7GZ应助慕容真采纳,获得10
6秒前
传奇3应助journey采纳,获得10
7秒前
ark861023发布了新的文献求助10
9秒前
9秒前
9秒前
zhangdatong发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
hl268完成签到,获得积分10
11秒前
11秒前
从容的皮皮虾完成签到 ,获得积分10
11秒前
11秒前
宝宝熊的熊宝宝完成签到,获得积分10
12秒前
刘艺娜发布了新的文献求助10
13秒前
13秒前
马森关注了科研通微信公众号
13秒前
君君欧发布了新的文献求助10
14秒前
iufan发布了新的文献求助10
14秒前
C2完成签到,获得积分10
15秒前
香蕉觅云应助柠檬要加冰采纳,获得10
15秒前
郝宝真发布了新的文献求助10
15秒前
大巧若拙完成签到,获得积分10
15秒前
Lone完成签到,获得积分10
15秒前
薰硝壤应助鸿鹄在天涯采纳,获得30
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813