Si nanoparticles confined within a conductive 2D porous Cu-based metal–organic framework (Cu3(HITP)2) as potential anodes for high-capacity Li-ion batteries

法拉第效率 阳极 材料科学 化学工程 阴极 金属有机骨架 纳米颗粒 多孔性 电极 导电体 电化学 纳米技术 复合材料 化学 吸附 有机化学 物理化学 工程类
作者
Aqsa Nazir,Hang T.T. Le,Arvind Kasbe,Chan-Jin Park
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:405: 126963-126963 被引量:45
标识
DOI:10.1016/j.cej.2020.126963
摘要

The utility of metal–organic frameworks (MOFs) as active agents in electronic appliances is beneficial owing to their outstanding properties, particularly their high porosity, high surface area, and unique chemical stability. Herein, we report the in-situ growth of Cu3(HITP)2, a two-dimensional (2D) conductive MOF with Cu at the center, around Si nanoparticles (SiNPs) at 27 °C. Enclosing the Si nanoparticles with the Cu-MOF yielded a desired buffer against the volume expansion and also effective electron- and ion-conducting channels for the SiNPs. Accordingly, the Cu-MOF-coated Si electrode exhibited high structural stability and low electrochemical degradation during lithiation/delithiation cycles. The electrode composed of SiNPs coated with 5% Cu-MOF exhibited an extremely high initial reversible capacity of 2511 mAh g−1 at the 0.1C rate with a coulombic efficiency of 78.5% in the first cycle and a capacity of 2483 mAh g−1 after 100 cycles. The reversible capacities during rate capability were 1303, 785, and 404 mAh g−1 at the rates of 5, 10, and 20C, respectively. The Cu-MOF (5%) delivered a reversible capacity of 1039 mAh g−1, even after 1000 cycles, at the high rate of 1C. The full-cell, composed of the Cu-MOF-coated Si anode and a LiCoO2 cathode, exhibited a remarkable rate capability and cyclability at 0.1C. This full-cell supplied a reversible (discharge) capacity of 1267 and 1105 mAh g−1 at rates of 0.5C and 1C, respectively. These results demonstrate the considerable potential of the synthesized Cu-MOF-encaged Si as a competitive anode material for next-generation LIBs in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
刚刚
欢喜大地发布了新的文献求助10
刚刚
刚刚
edtaa完成签到,获得积分10
刚刚
凡凡好运发布了新的文献求助10
1秒前
2秒前
2秒前
蝶衣发布了新的文献求助10
3秒前
桐桐应助qiul采纳,获得10
3秒前
春景当思完成签到,获得积分10
3秒前
研友_LX7lK8完成签到 ,获得积分10
3秒前
4秒前
7秒前
9秒前
猪小猪完成签到,获得积分10
11秒前
12秒前
13秒前
songxiyuan816完成签到,获得积分10
15秒前
张思铭应助pangboo采纳,获得10
15秒前
蝶衣完成签到,获得积分10
16秒前
鲁滨逊发布了新的文献求助10
19秒前
星辰大海应助解羽采纳,获得10
21秒前
21秒前
22秒前
23秒前
LYSM应助lovekobe采纳,获得10
26秒前
27秒前
27秒前
28秒前
RR完成签到,获得积分10
28秒前
29秒前
无尘泪完成签到,获得积分10
30秒前
Nikita完成签到 ,获得积分10
31秒前
oriole13发布了新的文献求助20
32秒前
kkkkkkkk发布了新的文献求助10
34秒前
34秒前
34秒前
星辰大海应助超级觅风采纳,获得10
35秒前
冰尘维吉发布了新的文献求助20
35秒前
37秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391459
求助须知:如何正确求助?哪些是违规求助? 3002609
关于积分的说明 8804678
捐赠科研通 2689177
什么是DOI,文献DOI怎么找? 1472982
科研通“疑难数据库(出版商)”最低求助积分说明 681284
邀请新用户注册赠送积分活动 674184