Comparative Analysis of Energy Management Strategies for HEV: Dynamic Programming and Reinforcement Learning

强化学习 动态规划 计算机科学 最优控制 随机规划 马尔可夫决策过程 增强学习 初始化 趋同(经济学) 控制器(灌溉) 随机控制 数学优化 控制理论(社会学) 控制工程 控制(管理) 人工智能 工程类 马尔可夫过程 数学 统计 农学 生物 经济 经济增长 程序设计语言 算法
作者
Heeyun Lee,Changhee Song,Namwook Kim,Suk Won
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 67112-67123 被引量:93
标识
DOI:10.1109/access.2020.2986373
摘要

Energy management strategy is an important factor in determining the fuel economy of hybrid electric vehicles; thus, much research on how to distribute the required power to engines and motors of hybrid vehicles is required. Recently, various studies have been conducted based on reinforcement learning to optimally control the hybrid electric vehicle. In fact, the fundamental control approach of reinforcement learning shares many control frameworks with the control approach by using deterministic dynamic programming or stochastic dynamic programming. In this study, we compare the reinforcement learning based strategy by using these dynamic programming-based control approaches. For optimal control of hybrid electric vehicle, each control method was compared in terms of fuel efficiency by performing simulation by using various driving cycles. Based on our simulations, we showed the reinforcement learning-based strategy can obtain global optimality in the optimal control problem with an infinite horizon, which can also be obtained by stochastic dynamic programming. We also showed that the reinforcement learning-based strategy can present a solution close to the optimal one using deterministic dynamic programming, while a reinforcement learning-based strategy is more appropriate for a time variant controller with boundary value constraints. In addition, we verified the convergence characteristics of the control strategy based on reinforcement learning, when transfer learning was performed through value initialization using stochastic dynamic programming.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小牛完成签到,获得积分10
1秒前
3秒前
3秒前
6秒前
LiM发布了新的文献求助10
9秒前
10秒前
媛宝&硕宝完成签到,获得积分10
10秒前
朴实山兰发布了新的文献求助10
10秒前
11秒前
weiteman完成签到,获得积分10
11秒前
11秒前
小马甲应助胡萝卜叶子采纳,获得10
11秒前
12秒前
12秒前
南笙完成签到 ,获得积分10
12秒前
12秒前
认真念梦发布了新的文献求助30
13秒前
qiong发布了新的文献求助10
14秒前
Akim应助livo采纳,获得30
15秒前
天天快乐应助LiM采纳,获得10
15秒前
毛豆应助pla采纳,获得10
16秒前
16秒前
GankhuyagJavzan完成签到,获得积分10
17秒前
瘦瘦冬寒发布了新的文献求助10
17秒前
小习发布了新的文献求助10
17秒前
18秒前
18秒前
怕孤单的初蝶完成签到,获得积分10
20秒前
21秒前
科研通AI2S应助nan采纳,获得10
22秒前
23秒前
25秒前
25秒前
26秒前
认真念梦完成签到,获得积分10
26秒前
Owen应助普雅花的等待采纳,获得10
26秒前
26秒前
29秒前
29秒前
星辰大海应助科研通管家采纳,获得30
30秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463136
求助须知:如何正确求助?哪些是违规求助? 3056553
关于积分的说明 9052821
捐赠科研通 2746441
什么是DOI,文献DOI怎么找? 1506928
科研通“疑难数据库(出版商)”最低求助积分说明 696226
邀请新用户注册赠送积分活动 695808