Double linker MOF-derived NiO and NiO/Ni supercapacitor electrodes for enhanced energy storage

非阻塞I/O 超级电容器 材料科学 煅烧 电极 化学工程 电化学 电容 水平扫描速率 储能 电解质 复合数 纳米技术 复合材料 循环伏安法 化学 催化作用 物理化学 工程类 功率(物理) 物理 量子力学 生物化学
作者
Kabir O. Otun,Morena S. Xaba,Shuang Zong,Xinying Liu,Diane Hildebrandt,Salah M. El‐Bahy,Zeinhom M. El‐Bahy
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:634: 128019-128019 被引量:83
标识
DOI:10.1016/j.colsurfa.2021.128019
摘要

Metal-organic frameworks (MOFs)-derived nanomaterials have emerged as novel electrodes for electrochemical energy storage application. Herein, MOF-derived NiO and NiO/Ni composite electrodes have been successfully synthesized by a unique double-linker MOF-strategy involving a series of calcination procedures (400 °C, 500 °C and 600 °C). The introduction of calcination temperature influenced both the textural and electrochemical properties of the MOF-derived NiO/Ni-400 and NiO/Ni-500 composite electrodes obtained at 400 °C and 500 °C respectively, as well as the NiO-600 electrode produced at 600 °C. With the combined benefits of improved uniform pore-size distribution and electrical conductivity, the composite electrodes delivered an enhanced supercapacitor performance with specific capacitances of 104.6 mAg−1 (NiO/Ni-400) and 37.4 mAg−1 (NiO/Ni-500) compared with 28.5 mAg−1 for the NiO-600 electrode at the same current density. Interestingly, NiO/Ni retained about 90% of its original capacitance after 1000 cycles when measured in 3 M KOH electrolyte solution. Furthermore, the electrochemical kinetic analysis used to probe the energy storage mechanism revealed pseudocapacitive behaviors at all tested scan rates; with NiO/Ni contributing 67% of the total capacitance at a scan rate of 5 mV/s which increased to 87% at 100 mV/s. The results obtained confirm that the approach described in this study is promising for the design of MOF-based electrodes for energy storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小遇完成签到 ,获得积分10
刚刚
悠悠发布了新的文献求助10
1秒前
MMMV完成签到,获得积分10
2秒前
5秒前
小蘑菇应助高挑的迎夏采纳,获得10
5秒前
tannie完成签到 ,获得积分0
6秒前
隐形珊完成签到,获得积分10
8秒前
希望天下0贩的0应助niniyiya采纳,获得10
8秒前
9秒前
9秒前
10秒前
Orange应助圈圈采纳,获得10
12秒前
aa完成签到,获得积分10
13秒前
愉快若剑发布了新的文献求助10
14秒前
Godlove发布了新的文献求助10
14秒前
kkk发布了新的文献求助10
15秒前
17秒前
酷波er应助方法采纳,获得10
18秒前
19秒前
Godlove完成签到,获得积分10
20秒前
20秒前
打打应助kkk采纳,获得10
21秒前
Jared应助小鱼头采纳,获得10
22秒前
23秒前
飞快的孱完成签到,获得积分10
25秒前
李爱国应助慕木采纳,获得10
25秒前
fengfeng发布了新的文献求助10
26秒前
psg完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
浮游应助求神拜佛采纳,获得10
28秒前
浮游应助求神拜佛采纳,获得10
28秒前
28秒前
sdfgv发布了新的文献求助10
30秒前
加菲丰丰举报外向的灵槐求助涉嫌违规
30秒前
完美世界应助百宝采纳,获得10
31秒前
高挑的迎夏完成签到,获得积分10
34秒前
Chris发布了新的文献求助10
35秒前
yiteng完成签到,获得积分10
35秒前
36秒前
Owen应助落寞的新晴采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633720
求助须知:如何正确求助?哪些是违规求助? 4729357
关于积分的说明 14986552
捐赠科研通 4791560
什么是DOI,文献DOI怎么找? 2558957
邀请新用户注册赠送积分活动 1519405
关于科研通互助平台的介绍 1479650