CAN3D: Fast 3D medical image segmentation via compact context aggregation

计算机科学 内存占用 分割 卷积神经网络 工作站 背景(考古学) 人工智能 深度学习 推论 图像分割 医学影像学 计算机视觉 计算机工程 生物 操作系统 古生物学
作者
Wei Dai,Boyeong Woo,Siyu Liu,Matthew Marques,Craig Engstrom,Peter Greer,Stuart Crozier,Jason Dowling,Shekhar S. Chandra
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:82: 102562-102562 被引量:4
标识
DOI:10.1016/j.media.2022.102562
摘要

Direct automatic segmentation of objects in 3D medical imaging, such as magnetic resonance (MR) imaging, is challenging as it often involves accurately identifying multiple individual structures with complex geometries within a large volume under investigation. Most deep learning approaches address these challenges by enhancing their learning capability through a substantial increase in trainable parameters within their models. An increased model complexity will incur high computational costs and large memory requirements unsuitable for real-time implementation on standard clinical workstations, as clinical imaging systems typically have low-end computer hardware with limited memory and CPU resources only. This paper presents a compact convolutional neural network (CAN3D) designed specifically for clinical workstations and allows the segmentation of large 3D Magnetic Resonance (MR) images in real-time. The proposed CAN3D has a shallow memory footprint to reduce the number of model parameters and computer memory required for state-of-the-art performance and maintain data integrity by directly processing large full-size 3D image input volumes with no patches required. The proposed architecture significantly reduces computational costs, especially for inference using the CPU. We also develop a novel loss function with extra shape constraints to improve segmentation accuracy for imbalanced classes in 3D MR images. Compared to state-of-the-art approaches (U-Net3D, improved U-Net3D and V-Net), CAN3D reduced the number of parameters up to two orders of magnitude and achieved much faster inference, up to 5 times when predicting with a standard commercial CPU (instead of GPU). For the open-access OAI-ZIB knee MR dataset, in comparison with manual segmentation, CAN3D achieved Dice coefficient values of (mean = 0.87 ± 0.02 and 0.85 ± 0.04) with mean surface distance errors (mean = 0.36 ± 0.32 mm and 0.29 ± 0.10 mm) for imbalanced classes such as (femoral and tibial) cartilage volumes respectively when training volume-wise under only 12G video memory. Similarly, CAN3D demonstrated high accuracy and efficiency on a pelvis 3D MR imaging dataset for prostate cancer consisting of 211 examinations with expert manual semantic labels (bladder, body, bone, rectum, prostate) now released publicly for scientific use as part of this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观采文完成签到,获得积分10
1秒前
KIORking发布了新的文献求助10
2秒前
3秒前
张建发布了新的文献求助10
4秒前
Hello应助丹丹采纳,获得10
4秒前
10秒前
KIORking完成签到,获得积分10
11秒前
11秒前
安澜完成签到,获得积分20
11秒前
dsfsd发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
张涛发布了新的文献求助10
15秒前
酷波er应助Lee采纳,获得10
17秒前
呆瓜完成签到,获得积分10
19秒前
20秒前
小马的可爱老婆2完成签到,获得积分10
20秒前
授业解惑的哑铃完成签到,获得积分10
21秒前
ni完成签到,获得积分10
21秒前
木木完成签到,获得积分10
23秒前
23秒前
23秒前
23秒前
24秒前
凌辰完成签到,获得积分10
25秒前
26秒前
木木发布了新的文献求助10
27秒前
DH完成签到 ,获得积分10
27秒前
青山完成签到,获得积分10
28秒前
正直凌文发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
王星星发布了新的文献求助10
28秒前
Lee发布了新的文献求助10
30秒前
共享精神应助123采纳,获得10
30秒前
Heisenberg完成签到,获得积分10
30秒前
静夜澜迷失完成签到 ,获得积分10
30秒前
风平浪静发布了新的文献求助10
31秒前
酷酷的采珊完成签到,获得积分10
32秒前
青山发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068