CAN3D: Fast 3D medical image segmentation via compact context aggregation

计算机科学 内存占用 分割 卷积神经网络 工作站 背景(考古学) 人工智能 深度学习 推论 图像分割 医学影像学 计算机视觉 计算机工程 生物 操作系统 古生物学
作者
Wei Dai,Boyeong Woo,Siyu Liu,Matthew Marques,Craig Engstrom,Peter B. Greer,‪Stuart Crozier‬,Jason Dowling,Shekhar S. Chandra
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:82: 102562-102562 被引量:14
标识
DOI:10.1016/j.media.2022.102562
摘要

Direct automatic segmentation of objects in 3D medical imaging, such as magnetic resonance (MR) imaging, is challenging as it often involves accurately identifying multiple individual structures with complex geometries within a large volume under investigation. Most deep learning approaches address these challenges by enhancing their learning capability through a substantial increase in trainable parameters within their models. An increased model complexity will incur high computational costs and large memory requirements unsuitable for real-time implementation on standard clinical workstations, as clinical imaging systems typically have low-end computer hardware with limited memory and CPU resources only. This paper presents a compact convolutional neural network (CAN3D) designed specifically for clinical workstations and allows the segmentation of large 3D Magnetic Resonance (MR) images in real-time. The proposed CAN3D has a shallow memory footprint to reduce the number of model parameters and computer memory required for state-of-the-art performance and maintain data integrity by directly processing large full-size 3D image input volumes with no patches required. The proposed architecture significantly reduces computational costs, especially for inference using the CPU. We also develop a novel loss function with extra shape constraints to improve segmentation accuracy for imbalanced classes in 3D MR images. Compared to state-of-the-art approaches (U-Net3D, improved U-Net3D and V-Net), CAN3D reduced the number of parameters up to two orders of magnitude and achieved much faster inference, up to 5 times when predicting with a standard commercial CPU (instead of GPU). For the open-access OAI-ZIB knee MR dataset, in comparison with manual segmentation, CAN3D achieved Dice coefficient values of (mean = 0.87 ± 0.02 and 0.85 ± 0.04) with mean surface distance errors (mean = 0.36 ± 0.32 mm and 0.29 ± 0.10 mm) for imbalanced classes such as (femoral and tibial) cartilage volumes respectively when training volume-wise under only 12G video memory. Similarly, CAN3D demonstrated high accuracy and efficiency on a pelvis 3D MR imaging dataset for prostate cancer consisting of 211 examinations with expert manual semantic labels (bladder, body, bone, rectum, prostate) now released publicly for scientific use as part of this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青山绿水完成签到,获得积分10
1秒前
四大天王看电势完成签到,获得积分10
1秒前
wing完成签到 ,获得积分10
1秒前
伴奏小胖完成签到 ,获得积分10
1秒前
柠静樨完成签到,获得积分10
1秒前
陈陈完成签到,获得积分10
1秒前
李静发布了新的文献求助10
2秒前
3秒前
3秒前
yshj完成签到 ,获得积分10
3秒前
汉堡包应助NorthWang采纳,获得10
3秒前
笨笨西装完成签到,获得积分10
4秒前
federish完成签到 ,获得积分10
4秒前
小青椒应助科研通管家采纳,获得60
4秒前
那时花开应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
amberzyc应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
5秒前
那时花开应助科研通管家采纳,获得10
5秒前
终梦应助科研通管家采纳,获得20
5秒前
终梦应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
nenoaowu完成签到,获得积分10
5秒前
5秒前
汤圆完成签到,获得积分10
5秒前
ruby30完成签到,获得积分10
5秒前
谨慎的凝丝完成签到,获得积分10
5秒前
舒服的月饼完成签到 ,获得积分10
6秒前
余鱼鱼发布了新的文献求助10
6秒前
7秒前
禾页完成签到 ,获得积分10
8秒前
马铃薯完成签到,获得积分10
8秒前
拼搏尔风完成签到,获得积分10
9秒前
DduYy完成签到,获得积分10
10秒前
11秒前
塘仔完成签到,获得积分10
11秒前
milv5完成签到,获得积分10
11秒前
直率的问筠完成签到,获得积分10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347799
求助须知:如何正确求助?哪些是违规求助? 4482040
关于积分的说明 13948663
捐赠科研通 4380425
什么是DOI,文献DOI怎么找? 2406961
邀请新用户注册赠送积分活动 1399538
关于科研通互助平台的介绍 1372763