已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CAN3D: Fast 3D medical image segmentation via compact context aggregation

计算机科学 内存占用 分割 卷积神经网络 工作站 背景(考古学) 人工智能 深度学习 推论 图像分割 医学影像学 计算机视觉 计算机工程 生物 操作系统 古生物学
作者
Wei Dai,Boyeong Woo,Siyu Liu,Matthew Marques,Craig Engstrom,Peter Greer,Stuart Crozier,Jason Dowling,Shekhar S. Chandra
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:82: 102562-102562 被引量:4
标识
DOI:10.1016/j.media.2022.102562
摘要

Direct automatic segmentation of objects in 3D medical imaging, such as magnetic resonance (MR) imaging, is challenging as it often involves accurately identifying multiple individual structures with complex geometries within a large volume under investigation. Most deep learning approaches address these challenges by enhancing their learning capability through a substantial increase in trainable parameters within their models. An increased model complexity will incur high computational costs and large memory requirements unsuitable for real-time implementation on standard clinical workstations, as clinical imaging systems typically have low-end computer hardware with limited memory and CPU resources only. This paper presents a compact convolutional neural network (CAN3D) designed specifically for clinical workstations and allows the segmentation of large 3D Magnetic Resonance (MR) images in real-time. The proposed CAN3D has a shallow memory footprint to reduce the number of model parameters and computer memory required for state-of-the-art performance and maintain data integrity by directly processing large full-size 3D image input volumes with no patches required. The proposed architecture significantly reduces computational costs, especially for inference using the CPU. We also develop a novel loss function with extra shape constraints to improve segmentation accuracy for imbalanced classes in 3D MR images. Compared to state-of-the-art approaches (U-Net3D, improved U-Net3D and V-Net), CAN3D reduced the number of parameters up to two orders of magnitude and achieved much faster inference, up to 5 times when predicting with a standard commercial CPU (instead of GPU). For the open-access OAI-ZIB knee MR dataset, in comparison with manual segmentation, CAN3D achieved Dice coefficient values of (mean = 0.87 ± 0.02 and 0.85 ± 0.04) with mean surface distance errors (mean = 0.36 ± 0.32 mm and 0.29 ± 0.10 mm) for imbalanced classes such as (femoral and tibial) cartilage volumes respectively when training volume-wise under only 12G video memory. Similarly, CAN3D demonstrated high accuracy and efficiency on a pelvis 3D MR imaging dataset for prostate cancer consisting of 211 examinations with expert manual semantic labels (bladder, body, bone, rectum, prostate) now released publicly for scientific use as part of this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaoyang123完成签到 ,获得积分10
2秒前
OmmeHabiba完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
9秒前
ma发布了新的文献求助10
11秒前
琉璃发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
20秒前
Xdz完成签到 ,获得积分10
20秒前
mysoul123发布了新的文献求助10
22秒前
山中蠢驴发布了新的文献求助20
24秒前
小二郎应助Ail采纳,获得10
25秒前
Shrimp完成签到 ,获得积分10
25秒前
Owen应助科研通管家采纳,获得10
26秒前
梦之凌云应助科研通管家采纳,获得30
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
Akim应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
科目三应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
慕青应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
28秒前
28秒前
djdsg发布了新的文献求助10
29秒前
29秒前
桐桐应助魔幻店员采纳,获得10
33秒前
凌寻冬发布了新的文献求助10
34秒前
爆米花应助djdsg采纳,获得10
38秒前
hhllhh啊完成签到 ,获得积分10
40秒前
40秒前
领导范儿应助左一采纳,获得10
41秒前
活着完成签到,获得积分10
42秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056349
求助须知:如何正确求助?哪些是违规求助? 2712892
关于积分的说明 7433585
捐赠科研通 2357851
什么是DOI,文献DOI怎么找? 1249112
科研通“疑难数据库(出版商)”最低求助积分说明 606850
版权声明 596195