Identifying imaging genetics biomarkers in Alzheimer’s disease via integrating graph convolutional neural network and canonical correlation analysis

卷积神经网络 相关性 影像遗传学 典型相关 模式识别(心理学) 神经影像学 计算生物学 图形 功率图分析 阿尔茨海默病神经影像学倡议 深度学习 全基因组关联研究 人工智能 神经科学 计算机科学 生物 遗传学 机器学习 单核苷酸多态性 认知 数学 认知障碍 理论计算机科学 基因 几何学 基因型
作者
Mansu Kim,Xiaohui Yao,Andrew J. Saykin,Jason H. Moore,Qi Long,Dokyoon Kim,Li Shen
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:17 (S4) 被引量:2
标识
DOI:10.1002/alz.053900
摘要

Abstract Background Brain imaging genetics is an emerging research topic in the study of Alzheimer’s disease (AD). The conventional approach, such as canonical correlation analysis (CCA), has been widely used to identify imaging genetic associations. A deep learning model has recently been proposed to better understand the roots of the complex association between imaging and genetic measures. We propose a graph convolutional neural network (GCN) with CCA loss function to integrate and identify the complex imaging genetics associations in AD. Method We proposed a spectral GCN approach with CCA loss function (GCN‐CCA) to extract feature representations from imaging and genetics data. Briefly, the graph embeddings on the graph nodes were filtered in the Fourier domain. We used two hidden layers with 64 hidden units for extracting imaging and genetic data. ReLU activations were used after each graph convolution layer. A canonical correlation loss function was optimized based on Adam optimizer. We compared our model with the deep CCA model (DCCA) for AD classification. Result We downloaded data for 310 participants (103 AD and 207 Cognitive Normal [CN]) including neuroimaging and genetic data from the ADNI database. We used average structural connectivity based on the AAL atlas as the graph in our GCN model, three imaging measurements (VBM, FDG, FBR) as initial attributes on the graph nodes. We selected 2,644 candidate SNPs from the GWAS catalog ( https://www.ebi.ac.uk/gwas/ ). The proposed model obtained 82.25 % test accuracy for the AD/CN classification, outperforming the DCCA model (77.41%). For interpretation, we generated the saliency maps using guided gradient backpropagation (Figs 1 and 2). We observed the imaging phenotypes from left middle temporal gyrus, superior temporal, frontal inferior triangularis, putamen, paracentral lobule, frontal medial orbital, and pallidum, and right posterior cingulum, and genetic markers from ABCA13 (rs2163935, rs6955132, rs4024044) and APOE (rs429358) contributed to the AD outcome prediction. Conclusion Here, we demonstrated the utility of GCN‐CCA model and its interpretability. The GCN‐CCA not only obtained higher prediction performance but also highlighted important regions for AD classification. We plan to apply our algorithm to other AD cohorts to see if our algorithm generalizes to independent data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾中的山雾中的我完成签到,获得积分10
刚刚
梁小包完成签到 ,获得积分10
2秒前
顾矜应助junyang采纳,获得10
2秒前
褪色者关注了科研通微信公众号
2秒前
青城昊发布了新的文献求助10
4秒前
5秒前
11xxyy发布了新的文献求助10
5秒前
6秒前
皇家咖啡完成签到 ,获得积分10
6秒前
芽芽豆完成签到 ,获得积分10
7秒前
Jane完成签到,获得积分10
9秒前
10秒前
英俊一刀发布了新的文献求助10
10秒前
薛定谔的猫完成签到,获得积分10
11秒前
yang发布了新的文献求助10
12秒前
萤火虫发布了新的文献求助10
13秒前
14秒前
junyang发布了新的文献求助10
15秒前
15秒前
dingding发布了新的文献求助10
17秒前
18秒前
wanghuiyanyx完成签到,获得积分10
18秒前
20秒前
uuu完成签到 ,获得积分10
20秒前
鹿鹿发布了新的文献求助10
21秒前
汉堡包应助英俊一刀采纳,获得10
21秒前
科研通AI5应助Victor采纳,获得10
22秒前
小蘑菇应助甜蜜水蜜桃采纳,获得10
23秒前
23秒前
25秒前
qinghe完成签到 ,获得积分10
25秒前
科目三应助yang采纳,获得20
26秒前
高大怀梦完成签到 ,获得积分10
27秒前
27秒前
千陽完成签到 ,获得积分10
28秒前
29秒前
方寸月光发布了新的文献求助10
29秒前
29秒前
31秒前
赘婿应助狂野代荷采纳,获得10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672853
求助须知:如何正确求助?哪些是违规求助? 3228951
关于积分的说明 9782732
捐赠科研通 2939308
什么是DOI,文献DOI怎么找? 1610870
邀请新用户注册赠送积分活动 760758
科研通“疑难数据库(出版商)”最低求助积分说明 736203