Deep feature extraction for document forgery detection with convolutional autoencoders

高光谱成像 自编码 人工智能 计算机科学 模式识别(心理学) 深度学习 卷积神经网络 特征提取 特征(语言学) 特征工程 特征学习 图像(数学) 机器学习 哲学 语言学
作者
Garima Jaiswal,Arun Sharma,Sumit Yadav
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:99: 107770-107770 被引量:16
标识
DOI:10.1016/j.compeleceng.2022.107770
摘要

Document forgery is a significant problem for ages due to paper-based documents' pervasive use. Classical destructive approaches for this problem, such as chromatography and electrophoresis, cannot be implemented as they flaw the document under analysis. Hyperspectral imaging - non-destructive approach that assists in finding the unique features of an image under investigation through their unique spectral signatures. It captures multiple narrow-band images at the electromagnetic spectrum, which is difficult through conventional imaging. Deep learning approaches for hyperspectral images have attained state-of-the-art results for solving many complex and challenging problems. Supervised classification of hyperspectral images is a tedious task since obtaining image labels and labeling the training data is a time-consuming and expensive process. In this paper, an unsupervised approach for classification of hyperspectral document images is proposed. To propose an unsupervised deep learning approach for ink mismatch detection in hyperspectral document images using spectral features. CAE-LR approach is proposed that uses Convolutional Autoencoder (CAE) for feature extraction and utilizing them for ink mismatch detection through Logistic Regression (LR). We evaluated the performance of CAE-LR on UWA writing ink hyperspectral images dataset for blue and black inks. Artificially similar color inks of different types (2∼5) were mixed in varying proportions to detect ink mismatch. Additionally, results are compared with three machine learning algorithms with variants of each, CNN, and five state-of-art methods used by the researchers. Experimental results illustrated that the CAE-LR outperforms all the above – mentioned approaches by achieving the state of art results, which depicts the efficacy of unsupervised deep learning approach for ink mismatch detection in hyperspectral document images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu完成签到 ,获得积分10
刚刚
调皮毛豆发布了新的文献求助10
刚刚
悠然完成签到,获得积分10
1秒前
1秒前
2秒前
Mizxira发布了新的文献求助10
2秒前
刘洋完成签到,获得积分10
3秒前
Disguise发布了新的文献求助10
3秒前
斯文败类应助噢噢采纳,获得10
3秒前
不黑完成签到,获得积分10
3秒前
高高的星月完成签到,获得积分20
3秒前
柚子完成签到,获得积分10
3秒前
lilaiyang完成签到,获得积分10
4秒前
风中的元菱完成签到,获得积分10
4秒前
东132完成签到,获得积分10
4秒前
4秒前
LUOLUO完成签到,获得积分20
4秒前
小黑喵完成签到 ,获得积分10
5秒前
小星星668完成签到,获得积分10
5秒前
现代秋白完成签到,获得积分10
5秒前
眯眯眼的衬衫应助aka2012采纳,获得10
5秒前
julia发布了新的文献求助10
5秒前
苏钰完成签到,获得积分10
5秒前
6秒前
荒野完成签到,获得积分20
6秒前
凝心完成签到 ,获得积分10
6秒前
lixinlong发布了新的文献求助10
6秒前
铎铎铎完成签到 ,获得积分10
6秒前
少年旭发布了新的文献求助20
7秒前
烟花应助tzq采纳,获得10
7秒前
囡囡完成签到,获得积分10
7秒前
Siren完成签到,获得积分10
7秒前
8秒前
看来斯蒂芬给看来斯蒂芬的求助进行了留言
8秒前
bkagyin应助郭初一采纳,获得10
8秒前
结实雪卉发布了新的文献求助20
8秒前
8秒前
星辰大海应助呆呆采纳,获得10
9秒前
9秒前
漂亮糜完成签到,获得积分20
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467389
求助须知:如何正确求助?哪些是违规求助? 3060276
关于积分的说明 9070826
捐赠科研通 2750717
什么是DOI,文献DOI怎么找? 1509378
科研通“疑难数据库(出版商)”最低求助积分说明 697277
邀请新用户注册赠送积分活动 697262