Advancements of MRI-Based Brain Tumor Segmentation from Traditional to Recent Trends- A Review

分割 脑瘤 磁共振成像 白质 人工智能 计算机科学 灰质 深度学习 医学
作者
Padmapriya Thiyagarajan,Sriramakrishnan Padmanaban,Kalaiselvi Thiruvenkadam,Somasundaram Karuppanagounder
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:17
标识
DOI:10.2174/1573405617666211215111937
摘要

Background: Among the brain-related diseases, brain tumor segmentation on magnetic resonance imaging (MRI) scans is one of the highly focused research domains in the medical community. Brain tumor segmentation is a very challenging task due to its asymmetric form and uncertain boundaries. This process segregates the tumor region into the active tumor, necrosis and edema from normal brain tissues such as white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF). Introduction: The proposed paper analyzed the advancement of brain tumor segmentation from conventional image processing techniques, to deep learning through machine learning on MRI of human head scans. Method: State-of-the-art methods of these three techniques are investigated, and the merits and demerits are discussed. Results: The prime motivation of the paper is to instigate the young researchers towards the development of efficient brain tumor segmentation techniques using conventional and recent technologies. Conclusion: The proposed analysis concluded that the conventional and machine learning methods were mostly applied for brain tumor detection, whereas deep learning methods were good at tumor substructures segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助小新采纳,获得10
1秒前
1秒前
欢喜发卡发布了新的文献求助10
1秒前
lalal发布了新的文献求助10
1秒前
张琼敏完成签到,获得积分20
1秒前
彭于晏应助xiaoxiao采纳,获得10
2秒前
ding应助西伯侯采纳,获得30
2秒前
2秒前
香蕉半邪发布了新的文献求助10
2秒前
乐乐应助简单如容采纳,获得80
3秒前
xiaosu发布了新的文献求助30
4秒前
坚强黎昕完成签到,获得积分10
5秒前
小沈发布了新的文献求助10
5秒前
5秒前
susu发布了新的文献求助10
5秒前
英姑应助榕俊采纳,获得10
7秒前
Akim应助hh采纳,获得10
7秒前
善学以致用应助王安琪采纳,获得10
7秒前
8秒前
8秒前
8秒前
星辰大海应助科研牛马采纳,获得10
9秒前
Sun发布了新的文献求助10
9秒前
9秒前
tian发布了新的文献求助10
10秒前
10秒前
kimihee完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
linuo应助volvoamg采纳,获得10
15秒前
15秒前
15秒前
wanci应助lalal采纳,获得10
15秒前
来日方长发布了新的文献求助10
15秒前
搜集达人应助susu采纳,获得10
16秒前
晚风发布了新的文献求助30
16秒前
fuje发布了新的文献求助10
16秒前
wqidoctor完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153667
求助须知:如何正确求助?哪些是违规求助? 2804835
关于积分的说明 7861986
捐赠科研通 2462948
什么是DOI,文献DOI怎么找? 1311018
科研通“疑难数据库(出版商)”最低求助积分说明 629429
版权声明 601821