Minimum-monitor-unit optimization via a stochastic coordinate descent method

数学优化 计算机科学 坐标下降 梯度下降 放松(心理学) 地铁列车时刻表 算法 数学 人工智能 心理学 人工神经网络 社会心理学 操作系统
作者
Jian‐Feng Cai,Ronald C. Chen,Junyi Fan,Hao Gao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (1): 015009-015009 被引量:20
标识
DOI:10.1088/1361-6560/ac4212
摘要

Abstract Objective . Deliverable proton spots are subject to the minimum monitor-unit (MMU) constraint. The MMU optimization problem with relatively large MMU threshold remains mathematically challenging due to its strong nonconvexity. However, the MMU optimization is fundamental to proton radiotherapy (RT), including efficient IMPT and proton arc delivery (ARC). This work aims to develop a new optimization algorithm that is effective in solving the MMU problem. Approach. Our new algorithm is primarily based on stochastic coordinate decent (SCD) method. It involves three major steps: first to decouple the determination of active sets for dose-volume-histogram (DVH) planning constraints from the MMU problem via iterative convex relaxation method; second to handle the nonconvexity of the MMU constraint via SCD to localize the index set of nonzero spots; third to solve convex subproblems projected to this convex set of nonzero spots via projected gradient descent method. Main results. Our new method SCD is validated and compared with alternating direction method of multipliers (ADMM) for IMPT and ARC. The results suggest SCD had better plan quality than ADMM, e.g. the improvement of conformal index (CI) from 0.56 to 0.69 during IMPT, and from 0.28 to 0.80 during ARC for the lung case. Moreover, SCD successfully handled the nonconvexity from large MMU threshold that ADMM failed to handle, in the sense that (1) the plan quality from ARC was worse than IMPT (e.g. CI was 0.28 with IMPT and 0.56 with ARC for the lung case), when ADMM was used; (2) in contrast, with SCD, ARC achieved better plan quality than IMPT (e.g. CI was 0.69 with IMPT and 0.80 with ARC for the lung case), which is compatible with more optimization degrees of freedom from ARC compared to IMPT. Significance . To the best of our knowledge, our new MMU optimization method via SCD can effectively handle the nonconvexity from large MMU threshold that none of the current methods can solve. Therefore, we have developed a unique MMU optimization algorithm via SCD that can be used for efficient IMPT, proton ARC, and other particle RT applications where large MMU threshold is desirable (e.g. for the delivery of high dose rates or/and a large number of spots).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助科研通管家采纳,获得30
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
2秒前
Rage_Wang应助雪山飞龙采纳,获得10
3秒前
3秒前
3秒前
4秒前
搬运工发布了新的文献求助10
5秒前
zoe发布了新的文献求助10
7秒前
GAO发布了新的文献求助10
8秒前
9秒前
合适小刺猬完成签到,获得积分10
11秒前
deng完成签到 ,获得积分10
12秒前
Jasper应助huakouguan采纳,获得10
13秒前
Ekkoye完成签到,获得积分10
14秒前
汉堡包应助哎哟我咧个去采纳,获得10
14秒前
荆三岁完成签到,获得积分10
14秒前
无花果应助zqqq采纳,获得10
14秒前
wangdong应助svt采纳,获得10
16秒前
小蘑菇应助沟通亿心采纳,获得10
17秒前
zoe完成签到,获得积分10
17秒前
研友_VZG7GZ应助害羞听芹采纳,获得10
19秒前
菘蓝泽蓼完成签到,获得积分10
26秒前
27秒前
27秒前
28秒前
万能图书馆应助suyaya采纳,获得10
29秒前
29秒前
李健应助头发茂密的我采纳,获得10
29秒前
30秒前
G大芋头发布了新的文献求助10
31秒前
乐乐应助jilingfenghuang采纳,获得10
32秒前
32秒前
yolok完成签到,获得积分10
33秒前
淡然善斓发布了新的文献求助10
33秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3720818
求助须知:如何正确求助?哪些是违规求助? 3266762
关于积分的说明 9946064
捐赠科研通 2980497
什么是DOI,文献DOI怎么找? 1634911
邀请新用户注册赠送积分活动 776182
科研通“疑难数据库(出版商)”最低求助积分说明 746155