阿格里坎
软骨发生
间充质干细胞
化学
细胞生物学
CD44细胞
CD90型
干细胞
细胞分化
脂肪生成
骨关节炎
医学
生物
细胞
病理
生物化学
替代医学
基因
关节软骨
作者
Mingzheng Wu,Feng Liu,Yan Li,Ruokun Huang,Rui Hu,Jin Zhu,Shanqing Li,Chao Long
标识
DOI:10.1080/15257770.2022.2057535
摘要
Osteoarthritis (OA) is a progressive degeneration of articular cartilage with involvement of synovial membrane, and subchondral bone. Recently, cell-based therapies, including the application of stem cells such as mesenchymal stem cells (MSCs), have been introduced for restoration of the articular cartilage. Toll-like receptors (TLRs) were reported to participate in OA progression and MSC chondrogenesis. Here, the role and molecular mechanism of toll like receptor 4 (TLR4) in chondrogenic differentiation of synovium-derived MSCs (SMSCs) were investigated. Molecular markers (CD44, CD90, CD45 and CD14) on SMSC surfaces were identified by flow cytometry. Multi-potential differentiation capacities of SMSCs for chondrogenesis, adipogenesis and osteogenesis were examined by Alcian blue, oil red O and Alizarin red staining, respectively. TLR4 and miR-145-5p levels in SMSCs were assessed using RT-qPCR. The protein expression of TGFB3, Col II, SOX9 and Aggrecan in SMSCs was tested by western blotting. Cytokine secretions were analyzed with ELISA for IL-1β and IL-6. Intracellular NAD+ content and NAD+/NADH ratio were assessed. The interaction between miR-145-5p and TLR4 was confirmed by RNA pulldown and luciferase reporter assays. In this study, SMSCs were identified to have immunophenotypic characteristics of MSCs. TLR4 knockdown inhibited chondrogenic and osteogenic differentiation of SMSCs. Mechanistically, TLR4 was targeted by miR-145-5p in SMSCs. Moreover, TLR4 elevation offset the inhibitory impact of miR-145-5p upregulation on chondrogenic differentiation of SMSCs. Overall, miR-145-5p restrains chondrogenesis of SMSCs by suppressing TLR4.
科研通智能强力驱动
Strongly Powered by AbleSci AI