Environment-Robust WiFi-Based Human Activity Recognition Using Enhanced CSI and Deep Learning

计算机科学 人工智能 特征提取 活动识别 机器学习 再培训 特征(语言学) 信道状态信息 深度学习 方案(数学) 匹配(统计) 噪音(视频) 人工神经网络 频道(广播) 模式识别(心理学) 无线 图像(数学) 电信 数学分析 语言学 哲学 统计 数学 计算机网络 国际贸易 业务
作者
Zhenguo Shi,Qingqing Cheng,J. Andrew Zhang,Richard Yi Da Xu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (24): 24643-24654 被引量:18
标识
DOI:10.1109/jiot.2022.3192973
摘要

Deep learning has demonstrated its great potential in channel state information (CSI)-based human activity recognition (HAR), and hence has attracted increasing attention in both the industry and academic communities. While promising, most existing high-accuracy methodologies require to retrain their models when applying the previous-trained ones to a new/unseen environment. This issue has limited their practical usabilities. In order to overcome this challenge, this article proposes an innovative scheme, which combines an activity-related feature extraction and enhancement (AFEE) method and matching network (AFEE-MatNet). The proposed scheme is “one-fits-all,” meaning that the trained model can be directly applied in new/unseen environments without any retraining. We introduce the AFEE method to enhance CSI quality by eliminating noise. Specifically, the approach mitigates environmental noises unrelated to activity while better compressing and preserving the behavior-related information. Moreover, the size of feature signals generated by AFEE are reduced, which in turn significantly shortens the training time. For effective feature extraction, we propose to use the MatNet architecture to learn transferable features shared among source environments. To further improve the recognition performance, we introduce a prediction checking and correction scheme to rectify some classification errors that do not abide by the state transition of human behaviors. Extensive experimental results demonstrate that our proposed AFEE-MatNet significantly outperforms existing state-of-the-art HAR methods, in terms of both recognition accuracy and training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助朴素的士晋采纳,获得10
1秒前
1秒前
3秒前
调研昵称发布了新的文献求助10
3秒前
3秒前
3秒前
十万大山兵大大给十万大山兵大大的求助进行了留言
3秒前
3秒前
CodeCraft应助Mumu采纳,获得10
4秒前
飘逸数据线完成签到,获得积分10
4秒前
111发布了新的文献求助10
4秒前
Gauss完成签到,获得积分0
4秒前
丘奇完成签到,获得积分10
4秒前
木子发布了新的文献求助10
4秒前
标致的方盒完成签到,获得积分10
4秒前
5秒前
致橡树完成签到,获得积分20
5秒前
Yolo发布了新的文献求助10
5秒前
yyy完成签到,获得积分20
6秒前
6秒前
6秒前
yoon发布了新的文献求助10
6秒前
脑洞疼应助香蕉静芙采纳,获得10
6秒前
JTB完成签到,获得积分10
6秒前
7秒前
慕涔发布了新的文献求助10
7秒前
王磊完成签到,获得积分10
7秒前
梧桐的灯完成签到 ,获得积分10
7秒前
传奇3应助轩辕德地采纳,获得10
7秒前
Arnold完成签到,获得积分20
7秒前
倪妮发布了新的文献求助10
8秒前
Island完成签到,获得积分10
8秒前
LiZheng完成签到,获得积分10
8秒前
深情安青应助致橡树采纳,获得10
9秒前
Leeon完成签到,获得积分10
9秒前
李来仪完成签到,获得积分10
9秒前
打打应助unicornmed采纳,获得10
9秒前
Eddy发布了新的文献求助10
10秒前
体贴远山完成签到,获得积分10
11秒前
顾矜应助贤惠的正豪采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762