Feature Fusion and Detection in Alzheimer’s Disease Using a Novel Genetic Multi-Kernel SVM Based on MRI Imaging and Gene Data

支持向量机 模式识别(心理学) 特征(语言学) 人工智能 核(代数) 计算生物学 遗传数据 基因 计算机科学 生物 遗传学 医学 数学 哲学 语言学 人口 环境卫生 组合数学
作者
Xianglian Meng,Qingpeng Wei,Meng Li,Junlong Liu,Yue Wu,Wenjie Liu
出处
期刊:Genes [Multidisciplinary Digital Publishing Institute]
卷期号:13 (5): 837-837 被引量:15
标识
DOI:10.3390/genes13050837
摘要

Voxel-based morphometry provides an opportunity to study Alzheimer’s disease (AD) at a subtle level. Therefore, identifying the important brain voxels that can classify AD, early mild cognitive impairment (EMCI) and healthy control (HC) and studying the role of these voxels in AD will be crucial to improve our understanding of the neurobiological mechanism of AD. Combining magnetic resonance imaging (MRI) imaging and gene information, we proposed a novel feature construction method and a novel genetic multi-kernel support vector machine (SVM) method to mine important features for AD detection. Specifically, to amplify the differences among AD, EMCI and HC groups, we used the eigenvalues of the top 24 Single Nucleotide Polymorphisms (SNPs) in a p-value matrix of 24 genes associated with AD for feature construction. Furthermore, a genetic multi-kernel SVM was established with the resulting features. The genetic algorithm was used to detect the optimal weights of 3 kernels and the multi-kernel SVM was used after training to explore the significant features. By analyzing the significance of the features, we identified some brain regions affected by AD, such as the right superior frontal gyrus, right inferior temporal gyrus and right superior temporal gyrus. The findings proved the good performance and generalization of the proposed model. Particularly, significant susceptibility genes associated with AD were identified, such as CSMD1, RBFOX1, PTPRD, CDH13 and WWOX. Some significant pathways were further explored, such as the calcium signaling pathway (corrected p-value = 1.35 × 10−6) and cell adhesion molecules (corrected p-value = 5.44 × 10−4). The findings offer new candidate abnormal brain features and demonstrate the contribution of these features to AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心鸵鸟发布了新的文献求助10
1秒前
xxk应助王大禹采纳,获得10
1秒前
研友_VZG7GZ应助KAI采纳,获得10
2秒前
咕噜完成签到 ,获得积分10
2秒前
spc发布了新的文献求助10
2秒前
zhangxiaohua发布了新的文献求助20
2秒前
丘比特应助勤奋的灵松采纳,获得10
2秒前
完美世界应助奥里给采纳,获得10
3秒前
是同学完成签到,获得积分10
3秒前
隐形曼青应助失眠的海云采纳,获得10
3秒前
华仔应助yiyi采纳,获得10
4秒前
4秒前
西原的橙果完成签到,获得积分10
4秒前
爆米花应助Wri采纳,获得10
5秒前
喝喂辉完成签到,获得积分10
5秒前
llewis完成签到,获得积分10
6秒前
脑洞疼应助seven采纳,获得10
7秒前
7秒前
白白发布了新的文献求助10
7秒前
小许同学应助优秀的灵安采纳,获得10
7秒前
8秒前
小豆芽完成签到,获得积分10
8秒前
9秒前
甜甜迎南完成签到,获得积分10
9秒前
脑洞疼应助顶刊采纳,获得10
10秒前
osmanthus应助奶桃七七采纳,获得10
11秒前
淡然冬灵应助奶桃七七采纳,获得10
11秒前
科研通AI5应助奶桃七七采纳,获得10
11秒前
12秒前
实验好难应助林卷卷采纳,获得10
12秒前
爆炸boom完成签到 ,获得积分10
12秒前
12秒前
13秒前
王哪跑12发布了新的文献求助20
13秒前
宇文沛岚发布了新的文献求助20
14秒前
春天在这李完成签到,获得积分10
14秒前
无奈抽屉发布了新的文献求助10
15秒前
16秒前
garden发布了新的文献求助20
16秒前
orixero应助小韩小韩采纳,获得10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756055
求助须知:如何正确求助?哪些是违规求助? 3299291
关于积分的说明 10109581
捐赠科研通 3013845
什么是DOI,文献DOI怎么找? 1655326
邀请新用户注册赠送积分活动 789704
科研通“疑难数据库(出版商)”最低求助积分说明 753361