A survey of deep learning approaches to image restoration

去模糊 计算机科学 人工智能 深度学习 图像复原 卷积神经网络 判别式 图像(数学) 机器学习 模式识别(心理学) 图像处理
作者
Jingwen Su,Boyan Xu,Hujun Yin
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:487: 46-65 被引量:87
标识
DOI:10.1016/j.neucom.2022.02.046
摘要

In this paper, we present an extensive review on deep learning methods for image restoration tasks. Deep learning techniques, led by convolutional neural networks, have received a great deal of attention in almost all areas of image processing, especially in image classification. However, image restoration is a fundamental and challenging topic and plays significant roles in image processing, understanding and representation. It typically addresses image deblurring, denoising, dehazing and super-resolution. There are substantial differences in the approaches and mechanisms in deep learning methods for image restoration. Discriminative learning based methods are able to deal with issues of learning a restoration mapping function effectively, while optimisation models based methods can further enhance the performance with certain learning constraints. In this paper, we offer a comparative study of deep learning techniques in image denoising, deblurring, dehazing, and super-resolution, and summarise the principles involved in these tasks from various supervised deep network architectures, residual or skip connection and receptive field to unsupervised autoencoder mechanisms. Image quality criteria are also reviewed and their roles in image restoration are assessed. Based on our analysis, we further present an efficient network for deblurring and a couple of multi-objective training functions for super-resolution restoration tasks. The proposed methods are compared extensively with the state-of-the-art methods with both quantitative and qualitative analyses. Finally, we point out potential challenges and directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢天菱完成签到,获得积分10
刚刚
wg完成签到,获得积分10
刚刚
2秒前
orixero应助小妮子采纳,获得10
2秒前
飘文献完成签到,获得积分0
2秒前
Sarah完成签到,获得积分10
3秒前
Huang_being发布了新的文献求助10
3秒前
3秒前
殷悦完成签到,获得积分10
3秒前
Laputa完成签到,获得积分10
3秒前
鲜艳的以寒完成签到,获得积分20
4秒前
管志明发布了新的文献求助10
4秒前
疯狂大脑壳完成签到,获得积分10
4秒前
jackwang完成签到,获得积分10
4秒前
李天王完成签到,获得积分10
4秒前
2025顺顺利利完成签到 ,获得积分10
4秒前
美满的惜霜完成签到,获得积分10
4秒前
GongSyi完成签到 ,获得积分10
4秒前
香蕉觅云应助忆枫采纳,获得10
4秒前
5秒前
不是山谷完成签到,获得积分10
5秒前
huzi完成签到,获得积分10
5秒前
夕荀发布了新的文献求助10
6秒前
cmy完成签到,获得积分10
6秒前
无私诗云发布了新的文献求助10
6秒前
屹男完成签到,获得积分10
7秒前
傻傻的夜柳完成签到 ,获得积分10
7秒前
lynn发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
直率的乐萱完成签到 ,获得积分10
8秒前
落后凝莲完成签到,获得积分10
9秒前
友好的睫毛完成签到 ,获得积分10
9秒前
Lgumsi完成签到,获得积分10
10秒前
王叮叮完成签到,获得积分10
10秒前
蔡万润完成签到 ,获得积分10
10秒前
ciiil完成签到,获得积分10
10秒前
Y_Bin完成签到,获得积分20
11秒前
动听煎饼完成签到 ,获得积分10
11秒前
Air云完成签到,获得积分10
11秒前
zzy发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598108
求助须知:如何正确求助?哪些是违规求助? 4009392
关于积分的说明 12410910
捐赠科研通 3688745
什么是DOI,文献DOI怎么找? 2033396
邀请新用户注册赠送积分活动 1066690
科研通“疑难数据库(出版商)”最低求助积分说明 951763