A survey of deep learning approaches to image restoration

去模糊 计算机科学 人工智能 深度学习 图像复原 卷积神经网络 判别式 图像(数学) 机器学习 模式识别(心理学) 图像处理
作者
Jingwen Su,Boyan Xu,Hujun Yin
出处
期刊:Neurocomputing [Elsevier]
卷期号:487: 46-65 被引量:87
标识
DOI:10.1016/j.neucom.2022.02.046
摘要

In this paper, we present an extensive review on deep learning methods for image restoration tasks. Deep learning techniques, led by convolutional neural networks, have received a great deal of attention in almost all areas of image processing, especially in image classification. However, image restoration is a fundamental and challenging topic and plays significant roles in image processing, understanding and representation. It typically addresses image deblurring, denoising, dehazing and super-resolution. There are substantial differences in the approaches and mechanisms in deep learning methods for image restoration. Discriminative learning based methods are able to deal with issues of learning a restoration mapping function effectively, while optimisation models based methods can further enhance the performance with certain learning constraints. In this paper, we offer a comparative study of deep learning techniques in image denoising, deblurring, dehazing, and super-resolution, and summarise the principles involved in these tasks from various supervised deep network architectures, residual or skip connection and receptive field to unsupervised autoencoder mechanisms. Image quality criteria are also reviewed and their roles in image restoration are assessed. Based on our analysis, we further present an efficient network for deblurring and a couple of multi-objective training functions for super-resolution restoration tasks. The proposed methods are compared extensively with the state-of-the-art methods with both quantitative and qualitative analyses. Finally, we point out potential challenges and directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助斐物采纳,获得10
刚刚
1秒前
LmyHusband发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
小皮皮完成签到,获得积分10
2秒前
打打应助顺顺采纳,获得10
2秒前
可爱的小paper完成签到,获得积分10
3秒前
xuwenqiu发布了新的文献求助10
3秒前
玉子完成签到 ,获得积分10
3秒前
小程快跑完成签到,获得积分10
3秒前
共享精神应助Odyssey_Cheung采纳,获得10
3秒前
5秒前
6秒前
6秒前
CipherSage应助czyhii采纳,获得10
6秒前
1111一完成签到,获得积分20
6秒前
6秒前
O哈哈完成签到 ,获得积分10
7秒前
万能图书馆应助feiline采纳,获得30
7秒前
7秒前
8秒前
8秒前
可可完成签到 ,获得积分10
9秒前
夜琉璃应助白衣卿相采纳,获得20
9秒前
内向灵凡发布了新的文献求助10
9秒前
10秒前
小秘发布了新的文献求助10
10秒前
13秒前
梁Sir完成签到,获得积分10
13秒前
方又晴发布了新的文献求助10
13秒前
虚心元绿发布了新的文献求助10
14秒前
小赵完成签到,获得积分10
15秒前
xuwenqiu完成签到,获得积分10
15秒前
华仔应助内向灵凡采纳,获得10
16秒前
16秒前
隐形曼青应助kmg采纳,获得10
16秒前
SciGPT应助草莓熊采纳,获得10
16秒前
16秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581067
求助须知:如何正确求助?哪些是违规求助? 4665670
关于积分的说明 14757575
捐赠科研通 4607418
什么是DOI,文献DOI怎么找? 2528250
邀请新用户注册赠送积分活动 1497567
关于科研通互助平台的介绍 1466460