A survey of deep learning approaches to image restoration

去模糊 计算机科学 人工智能 深度学习 图像复原 卷积神经网络 判别式 图像(数学) 机器学习 模式识别(心理学) 图像处理
作者
Jingwen Su,Boyan Xu,Hujun Yin
出处
期刊:Neurocomputing [Elsevier]
卷期号:487: 46-65 被引量:53
标识
DOI:10.1016/j.neucom.2022.02.046
摘要

In this paper, we present an extensive review on deep learning methods for image restoration tasks. Deep learning techniques, led by convolutional neural networks, have received a great deal of attention in almost all areas of image processing, especially in image classification. However, image restoration is a fundamental and challenging topic and plays significant roles in image processing, understanding and representation. It typically addresses image deblurring, denoising, dehazing and super-resolution. There are substantial differences in the approaches and mechanisms in deep learning methods for image restoration. Discriminative learning based methods are able to deal with issues of learning a restoration mapping function effectively, while optimisation models based methods can further enhance the performance with certain learning constraints. In this paper, we offer a comparative study of deep learning techniques in image denoising, deblurring, dehazing, and super-resolution, and summarise the principles involved in these tasks from various supervised deep network architectures, residual or skip connection and receptive field to unsupervised autoencoder mechanisms. Image quality criteria are also reviewed and their roles in image restoration are assessed. Based on our analysis, we further present an efficient network for deblurring and a couple of multi-objective training functions for super-resolution restoration tasks. The proposed methods are compared extensively with the state-of-the-art methods with both quantitative and qualitative analyses. Finally, we point out potential challenges and directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
十一发布了新的文献求助10
1秒前
可靠的青槐完成签到,获得积分10
2秒前
4秒前
4秒前
甜甜发布了新的文献求助10
4秒前
calm发布了新的文献求助10
7秒前
十一完成签到,获得积分10
7秒前
Cwx2020发布了新的文献求助10
7秒前
Jasper应助gxh66采纳,获得10
9秒前
鬼才之眼完成签到,获得积分10
10秒前
Fury发布了新的文献求助10
11秒前
ccq发布了新的文献求助10
11秒前
yanxueyi完成签到 ,获得积分10
12秒前
清醒完成签到,获得积分10
14秒前
共享精神应助wang采纳,获得10
15秒前
16秒前
17秒前
17秒前
calm完成签到,获得积分20
18秒前
21秒前
21秒前
quanjia发布了新的文献求助10
22秒前
啦啦啦发布了新的文献求助10
22秒前
24秒前
25秒前
25秒前
巫马小霜发布了新的文献求助20
27秒前
wang发布了新的文献求助10
28秒前
布洛芬发布了新的文献求助10
29秒前
Singularity应助甜甜采纳,获得10
30秒前
bestbanana发布了新的文献求助10
30秒前
刻苦小丸子完成签到,获得积分10
30秒前
wnche完成签到,获得积分10
31秒前
上官若男应助爱睡午觉采纳,获得10
31秒前
万能图书馆应助清醒采纳,获得10
32秒前
和谐小南完成签到,获得积分10
33秒前
司徒不二完成签到,获得积分0
34秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023