A survey of deep learning approaches to image restoration

去模糊 计算机科学 人工智能 深度学习 图像复原 卷积神经网络 判别式 图像(数学) 机器学习 模式识别(心理学) 图像处理
作者
Jingwen Su,Boyan Xu,Hujun Yin
出处
期刊:Neurocomputing [Elsevier]
卷期号:487: 46-65 被引量:87
标识
DOI:10.1016/j.neucom.2022.02.046
摘要

In this paper, we present an extensive review on deep learning methods for image restoration tasks. Deep learning techniques, led by convolutional neural networks, have received a great deal of attention in almost all areas of image processing, especially in image classification. However, image restoration is a fundamental and challenging topic and plays significant roles in image processing, understanding and representation. It typically addresses image deblurring, denoising, dehazing and super-resolution. There are substantial differences in the approaches and mechanisms in deep learning methods for image restoration. Discriminative learning based methods are able to deal with issues of learning a restoration mapping function effectively, while optimisation models based methods can further enhance the performance with certain learning constraints. In this paper, we offer a comparative study of deep learning techniques in image denoising, deblurring, dehazing, and super-resolution, and summarise the principles involved in these tasks from various supervised deep network architectures, residual or skip connection and receptive field to unsupervised autoencoder mechanisms. Image quality criteria are also reviewed and their roles in image restoration are assessed. Based on our analysis, we further present an efficient network for deblurring and a couple of multi-objective training functions for super-resolution restoration tasks. The proposed methods are compared extensively with the state-of-the-art methods with both quantitative and qualitative analyses. Finally, we point out potential challenges and directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
huhuhu发布了新的文献求助10
2秒前
LYD发布了新的文献求助10
4秒前
罗小罗同学完成签到,获得积分10
5秒前
啊啊啊啊啊啊完成签到 ,获得积分10
6秒前
单纯海蓝关注了科研通微信公众号
7秒前
Criminology34应助benlaron采纳,获得10
7秒前
小栾完成签到,获得积分10
8秒前
9秒前
10秒前
困困完成签到 ,获得积分10
10秒前
马大帅完成签到,获得积分10
11秒前
12秒前
13秒前
顾矜应助风与诗采纳,获得10
13秒前
zx完成签到,获得积分20
14秒前
15秒前
开心的雁芙完成签到,获得积分10
15秒前
15秒前
drfang完成签到 ,获得积分10
15秒前
武雨寒发布了新的文献求助10
16秒前
慕青应助zhouyan采纳,获得10
17秒前
1111发布了新的文献求助10
18秒前
开朗煎饼完成签到 ,获得积分10
18秒前
19秒前
19秒前
唔哈哈哈SCI我来啦完成签到,获得积分10
20秒前
clwh2006完成签到,获得积分10
21秒前
23秒前
zimuxinxin发布了新的文献求助10
23秒前
24秒前
24秒前
流露发布了新的文献求助10
24秒前
24秒前
cz完成签到,获得积分10
26秒前
Lignin发布了新的文献求助10
26秒前
27秒前
Rocsoar发布了新的文献求助10
27秒前
潮鸣完成签到 ,获得积分10
29秒前
小二郎应助huhuhu采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736751
求助须知:如何正确求助?哪些是违规求助? 5368102
关于积分的说明 15333909
捐赠科研通 4880517
什么是DOI,文献DOI怎么找? 2622883
邀请新用户注册赠送积分活动 1571780
关于科研通互助平台的介绍 1528601