A survey of deep learning approaches to image restoration

去模糊 计算机科学 人工智能 深度学习 图像复原 卷积神经网络 判别式 图像(数学) 机器学习 模式识别(心理学) 图像处理
作者
Jingwen Su,Boyan Xu,Hujun Yin
出处
期刊:Neurocomputing [Elsevier]
卷期号:487: 46-65 被引量:87
标识
DOI:10.1016/j.neucom.2022.02.046
摘要

In this paper, we present an extensive review on deep learning methods for image restoration tasks. Deep learning techniques, led by convolutional neural networks, have received a great deal of attention in almost all areas of image processing, especially in image classification. However, image restoration is a fundamental and challenging topic and plays significant roles in image processing, understanding and representation. It typically addresses image deblurring, denoising, dehazing and super-resolution. There are substantial differences in the approaches and mechanisms in deep learning methods for image restoration. Discriminative learning based methods are able to deal with issues of learning a restoration mapping function effectively, while optimisation models based methods can further enhance the performance with certain learning constraints. In this paper, we offer a comparative study of deep learning techniques in image denoising, deblurring, dehazing, and super-resolution, and summarise the principles involved in these tasks from various supervised deep network architectures, residual or skip connection and receptive field to unsupervised autoencoder mechanisms. Image quality criteria are also reviewed and their roles in image restoration are assessed. Based on our analysis, we further present an efficient network for deblurring and a couple of multi-objective training functions for super-resolution restoration tasks. The proposed methods are compared extensively with the state-of-the-art methods with both quantitative and qualitative analyses. Finally, we point out potential challenges and directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhhhmmmm发布了新的文献求助10
刚刚
1秒前
彭静琳给彭静琳的求助进行了留言
2秒前
fenfen发布了新的文献求助10
3秒前
JamesPei应助吃饭了吗123采纳,获得10
3秒前
爆米花应助hahhha采纳,获得10
4秒前
4秒前
110o发布了新的文献求助10
6秒前
泊頔发布了新的文献求助10
8秒前
寒江雪发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
Thien发布了新的文献求助10
9秒前
gary应助felix采纳,获得10
11秒前
pluto应助felix采纳,获得10
11秒前
11秒前
泪七龙完成签到,获得积分10
11秒前
可爱的函函应助CoCo采纳,获得10
12秒前
郭依婷发布了新的文献求助10
12秒前
12秒前
13秒前
munawar发布了新的文献求助10
16秒前
sian发布了新的文献求助10
16秒前
泪七龙发布了新的文献求助10
17秒前
科研通AI6应助ruby采纳,获得10
17秒前
17秒前
mo完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
憨憨发布了新的文献求助10
20秒前
科研通AI6应助寒江雪采纳,获得10
21秒前
zzmyyds完成签到,获得积分10
21秒前
Ava应助阿南采纳,获得10
22秒前
贾明阳完成签到,获得积分10
22秒前
22秒前
mo发布了新的文献求助10
22秒前
Chelsea发布了新的文献求助30
23秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421901
求助须知:如何正确求助?哪些是违规求助? 4536896
关于积分的说明 14155394
捐赠科研通 4453475
什么是DOI,文献DOI怎么找? 2442890
邀请新用户注册赠送积分活动 1434308
关于科研通互助平台的介绍 1411402