BTS-GAN: Computer-aided segmentation system for breast tumor using MRI and conditional adversarial networks

计算机科学 人工智能 分割 编码器 鉴别器 模式识别(心理学) 特征(语言学) 深度学习 图像分割 翻译(生物学) 发电机(电路理论) 计算机视觉 过程(计算) 电信 语言学 哲学 生物化学 化学 功率(物理) 物理 量子力学 探测器 信使核糖核酸 基因 操作系统
作者
Imran Ul Haq,Haider Ali,Hong Yu Wang,Lei Cui,Jun Feng
出处
期刊:Engineering Science and Technology, an International Journal [Elsevier BV]
卷期号:36: 101154-101154 被引量:5
标识
DOI:10.1016/j.jestch.2022.101154
摘要

Breast tumor is one of the most prominent indicators for the diagnosis of breast cancer. The precise segmentation of tumors is crucial for enhancing the accuracy of breast cancer detection. A physician’s assessment of the MRI scan is time-consuming and require a lot of human effort and expertise. Furthermore, traditional medical segmentation approaches frequently need prior information or manual feature extraction, resulting in a subjective diagnosis. Therefore, the development of an automated image segmentation approach is essential for clinical applications. This work presents BTS-GAN, an automatic breast tumor segmentation process using conditional GAN (cGAN) in Magnetic Resonance Imaging (MRI) scans. First, we used an encoder-decoder deep network with skip connections between encoder and decoder for the generator to increase the localization efficiency. Second, we utilized a parallel dilated convolution (PDC) module to retain the features of various sizes of masses and to effectively extract information about the masses’ edges and interior texture. Third, an extra classification-related constraint is included to the loss function of the cGAN for mitigating the hard-to-converge challenge in image-to-image (I2I) translation tasks based on classification. The generator side of our proposed model learns to detect the tumor and construct a binary mask, while the discriminator learns to distinguish between ground truth and synthetic masks, driving the generator to produce masks as genuine as possible. The experimental results demonstrate that our BTS-GAN is more efficient and reliable for breast tumor segmentation and outperform other segmentation techniques in terms of the IoU and Dice coefficient on the publicly available RIDER breast cancer MRI dataset. Our proposed model achieved an average IoU and Dice scores of 77% and 85% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
志堂真辉发布了新的文献求助20
2秒前
小胖完成签到,获得积分10
2秒前
苏苏完成签到,获得积分10
2秒前
tmrrrrrr完成签到 ,获得积分10
2秒前
艾米完成签到,获得积分10
3秒前
大大王完成签到,获得积分10
3秒前
ENHNG发布了新的文献求助10
3秒前
独特四娘完成签到,获得积分20
3秒前
3秒前
彭于晏应助iceeer采纳,获得10
3秒前
万能图书馆应助gj采纳,获得10
4秒前
5秒前
andrele应助冬瓜熊采纳,获得10
5秒前
大方小松鼠完成签到,获得积分10
6秒前
施意完成签到,获得积分10
6秒前
瘾9发布了新的文献求助10
6秒前
6秒前
lilichen完成签到,获得积分20
7秒前
7秒前
Xie完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助西番雅采纳,获得10
9秒前
佩琪完成签到,获得积分10
9秒前
愉快书琴完成签到,获得积分10
10秒前
xiexiufang完成签到,获得积分10
10秒前
单纯芹菜完成签到,获得积分10
10秒前
任性铅笔完成签到,获得积分10
10秒前
小王小王发布了新的文献求助10
11秒前
皮卡发布了新的文献求助10
11秒前
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
12秒前
001完成签到,获得积分10
12秒前
李爱国应助执着的怜寒采纳,获得10
12秒前
12秒前
Darlin发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
johnny完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
APA handbook of personality and social psychology, Volume 2: Group processes 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3656206
求助须知:如何正确求助?哪些是违规求助? 3218839
关于积分的说明 9726906
捐赠科研通 2927577
什么是DOI,文献DOI怎么找? 1603241
邀请新用户注册赠送积分活动 756052
科研通“疑难数据库(出版商)”最低求助积分说明 733735